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Summary. These notes describe several loop soup models and their universal behaviour
in dimensions greater or equal to 3. These loop models represent certain classical or
quantum statistical mechanical systems. These systems undergo phase transitions that
are characterised by changes in the structures of the loops. Namely, long-range order is
equivalent to the occurrence of macroscopic loops. There are many such loops, and the
joint distribution of their lengths is always given by a Poisson-Dirichlet distribution.
This distribution concerns random partitions and it is not widely known in statistical
physics. We introduce it explicitly, and we explain that it is the invariant measure of a
mean-�eld split-merge process. It is relevant to spatial models because the macroscopic
loops are so intertwined that they behave e�ectively in mean-�eld fashion. This heuristics
can be made exact and it allows to calculate the parameter of the Poisson-Dirichlet
distribution. We discuss consequences about symmetry breaking in certain quantum
spin systems.
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1 Introduction

�Loop soups� has become the generic term for a statistical physical system where
objects are one-dimensional closed trajectories living in a higher dimensional
space. Loop soup models do not describe physical systems directly; rather, they
are mathematical representations of relevant models. Among many examples of
loop soup models, let us mention:

� Feynman's representation of the interacting Bose gas [18].
� Lattice permutations [18; 27]: This is a rather crude approximation of the

previous system, but the model has interesting physical and mathematical
aspects.

� The Symanzik-BFS loop representation of classical O(N) spin models [12; 16].

� O(N) loop models, where the Gibbs factor e
∑
xy β

→
ϕx ·

→
ϕy is replaced by

∏
xy(1+

β
→
ϕx ·

→
ϕy). This is justi�ed for small β.
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� Tóth's representation of the spin 1
2 quantum Heisenberg ferromagnet [35],

Aizenman and Nachtergaele's representation of the Heisenberg antiferromag-
net [1], and extensions that include the spin 1

2 quantum XY model [37].

We could add many more examples to this list. The goal of these notes is to
show that these loop soup models share a universal feature: In dimension d ≥ 3,
there exists a phase with long, macroscopic loops. Further, the joint distribution
of the lengths of long loops is always Poisson-Dirichlet. The latter distribution was
explicitly introduced by Kingman [28]. It describes random partitions in diverse
situations such as population genetics [15], Bayesian statistics [17], combinatorics
[40], number theory [39], statistical mechanics [13], probability theory [22], and
record statistics [23]. As for loop soup models in statistical physics, that possess
a spatial structure, the presence of the Poisson-Dirichlet distribution was pointed
out recently in [24; 25; 37].

This conjecture, and the heuristics behind it, involves notions borrowed from
mathematical biology and probability theory; they are not well-known in theoret-
ical physics. These notes introduce these notions in an essentially self-contained
fashion.

We describe several interesting loop models in Section 2. The conjecture about
the universal behaviour of loop soups is stated in Section 3; this involves the
Poisson-Dirichlet distribution about random partitions, which is introduced in the
following Section 4. In the next two sections we check that the Poisson-Dirichlet
distribution is the invariant measure of the split-merge process; for this, we discuss
random permutations in Section 5 before introducing the split-merge process in
Section 6.

It is a remarkable fact that these mean-�eld models describe spatial systems
exactly; the heuristics is explained in Section 7. It is useful in order to understand
the mechanisms, and also to learn a way to calculate the parameter of the Poisson-
Dirichlet distribution. We conclude by discussing in Section 8 a useful consequence
of this conjecture, namely that it helps to identify the nature of symmetry breaking
in certain quantum spin systems.

2 Loop soup models

2.1 Feynman representation of the Bose gas

The representation dates back to 1953 and sought to understand Bose-Einstein
condensation in interacting systems. It constitutes an interesting loop model, and
it also suggests several related models discussed afterwards.

Recall that the integral kernel of an operator A : L2(Rd) → L2(Rd) is a
function Rd × Rd → R (which we also denote A) that is such that for all square-
integrable functions f , we have

(Af)(x) =

∫
Rd
A(x, y)f(y)dy. (2.1)

It is well-known that the integral kernel of the exponential of the laplacian, e
1
2 t∆ ,

is the gaussian function gt(x− y), where
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gt(x) =
1

(2πt)d/2
e−x

2/2t . (2.2)

The Wiener measure dW for the Brownian bridges between x and y is a measure
on continuous paths ω : [0, β] → Rd such that ω(0) = x and ω(β) = y. If f is a
function that depends on the path at times 0 < t1 < · · · < tk < β, we have∫

x7→y
f(ω)dW (ω) =

∫
Rd

dx1· · ·
∫
Rd

dxk gt1(x1 − x)

· gt2−t1(x2 − x1) . . . gβ−tk(y − xk) f(x1, . . . , xk). (2.3)

Consider now the operator e
1
2∆−U , where the function U : Rd → R acts as a

multiplication operator. Using the Trotter product formula, we can show that the
integral kernel of this operator is

eβ( 1
2∆−U) (x, y) =

∫
x7→y

dW (ω) e−
∫ β
0
U(ω(s))ds . (2.4)

Fig. 1: Illustration of Feynman's representation of quantum bosons at equilibrium by
Brownian trajectories. There are two spatial and one �imaginary time� dimensions here.

We now consider a gas of n identical bosons at equilibrium in a domain Λ ⊂
Rd, where the two-body interactions between particles are given by the function
U : Rd → R. The Hilbert space is the space of square-integrable functions L2(Λn)
and the hamiltonian is

HΛ,n = − 1
2

n∑
i=1

∆i +
∑

1≤i<j≤n

U(xi − xj), (2.5)

where ∆i is the laplacian for the ith boson and U( · ) acts as multiplication op-
erator. The partition function Z(β,Λ, n) is given by the trace of e−βHΛ,n on the
symmetric subspace of L2(Λn). Let Psym denote the projector onto symmetric
functions,
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Psymf(x1, . . . , xn) =
1

n!

∑
σ∈Sn

f(xσ(1), . . . , xσ(n)). (2.6)

The sum is over all permutations of n elements. Then

Z(β,Λ, n) = Tr L2(Λn)Psym e−βHΛ,n

=
1

n!

∑
σ∈Sn

∫
Λ

dx1· · ·
∫
Λ

dxn

∫
x1 7→xσ(1)

dW (ω1)· · ·
∫
xn 7→xσ(n)

dW (ωn)

exp
{
−

∑
1≤i<j≤n

∫ β

0

U
(
ωi(s)− ωj(s)

)
ds
}
.

(2.7)

The expression above is illustrated in Fig. 1. We observe that it involves a sum
over permutations with positive weights; this induces a probability measure on
permutations.

One expects that Bose-Einstein condensation is signalled by the occurrence of
permutation cycles of divergent lengths (�divergent� refers to the thermodynamic
limit where |Λ|, n→∞ while the density n/|Λ| is kept �xed); further, these long
cycles are macroscopic, that is, they are proportional to n, and there are many
of them. This was pointed out by Süt® in the case of the ideal gas [34]. We argue
below that this remains true in the presence of interactions, and that the joint
distribution of the lengths of macroscopic cycles is Poisson-Dirichlet; this can
actually be proved in the case of the ideal gas [9].

2.2 Lattice permutations

The model of lattice permutations is more intriguing than physical. It goes back
to Feynman [18] and Kikuchi [27]. It has been studied numerically in [21; 25], and
mathematically in [6; 7] � the latter article proves in particular that the critical
parameter for the presence of long cycles is strictly less than that for self-avoiding
walks.

Let Λ = {1, . . . , L}d be a d-dimensional box, and let SΛ denote the set of
permutations on Λ (bijections Λ→ Λ). The probability of the permutation σ ∈ SΛ
is de�ned as

PΛ(σ) =
1

Z(Λ)
exp
{
−α

∑
x∈Λ

ξ
(
‖x− σ(x)‖

)}
. (2.8)

Here, ξ is an increasing function [0,∞) → [0,∞] such that ξ(0) = 0, and such
that e−ξ(r) decays su�ciently rapidly as r →∞ so that all jumps x 7→ σ(x) are
bounded uniformly in L. The normalisation Z(Λ) is the partition function

Z(Λ) =
∑
σ∈SΛ

exp
{
−α

∑
x∈Λ

ξ
(
‖x− σ(x)‖

)}
. (2.9)

This model is illustrated in Fig. 2. It is a simpli�cation of Feynman's representa-
tion of the interacting Bose gas; particles are assumed to be spread quite uniformly
in the whole domain, hence the lattice. The relevant weight is e−α‖x−σ(x)‖2 with
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Fig. 2: Lattice permutations.

α ∼ 1/β; it accounts for the integral over Brownian paths from x to σ(x). Inter-
actions between bosons are neglected.

Because of the weights, all jumps x 7→ σ(x) involve nearby sites. The most
probable permutation is the identity, σ(x) = x for all x ∈ Λ. For large α, typical
permutations are close to the identity with a small density of �nite cycles. For
small α, there are longer jumps, and there is a possibility of very large cycles.
A phase transition was indeed observed numerically in [21] in dimension d = 3.
Large cycles have macroscopic lengths, and it was also noticed that the expected
length of the longest cycle, divided by the fraction of points in long cycles, was
equal to 62%, as in random permutations without spatial structure. This was a
hint pointing to a very general behaviour, but there was no clear understanding
then.

The situation has now been clari�ed. The joint distribution of the lengths of
macroscopic cycles is Poisson-Dirichlet, as is explained below. This was numeri-
cally veri�ed in this model in [25].

One can also consider an �annealed� model where one integrates over point
positions. Namely, with Λ ⊂ Rd a cubic box of size L, the probability of the
permutation σ ∈ Sn is

PΛ,n(σ) =
1

Z(Λ, n)

∫
Λn

dx1 . . . dxn exp
{
−α

n∑
i=1

ξ
(
‖xi − xσ(i)‖

)}
, (2.10)

with the normalisation given by

Z(Λ, n) =
∑
σ∈Sn

∫
Λn

dx1 . . . dxn exp
{
−α

n∑
i=1

ξ
(
‖xi − xσ(i)‖

)}
. (2.11)

This is illustrated in Fig. 3
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Fig. 3: Annealed spatial permutations, where one averages over point positions.

The case ξ(‖x‖) = ‖x‖2 corresponds to the ideal Bose gas. In this case, Süt®
proved that the Bose-Einstein condensation amounts to the occurrence of macro-
scopic cycles [34]. This was extended in [8] to more general functions ξ (such that
e−ξ has positive Fourier transform), and the presence of the Poisson-Dirichlet
distribution was rigorously established in [9].

2.3 Spin O(N) models

Loop representations for classical lattice spin O(N) models were proposed by
Brydges, Fröhlich, and Spencer [12]; they were partly motivated by earlier work
of Symanzik. This representation has allowed to prove the �triviality� of the be-
haviour of correlation functions in high dimensions, see [16].

The con�guration space is (SN )Λ, where SN is the N -dimensional unit sphere,
that is, the set of vectors with (N + 1) components and norm 1; the domain Λ is
a �nite subset of Zd. The partition function is

Z(Λ) =

∫
(SN )Λ

exp
{

1
2

∑
x,y∈Λ,x6=y

Jxyσx ·σy
} ∏
x∈Λ

dσx. (2.12)

Here, (Jxy)x,y∈Λ are coupling constants and
∫

dσx is the Lebesgue integral on
SN . The cases N = 1, 2, 3 correspond to the Ising model, to the classical XY or
rotator model, and to the classical Heisenberg model, respectively.

This partition function can be expressed as a gas of closed loops. Here, a loop
of length k is a vector γ = (x1, . . . , xk) with xi ∈ Λ and xi 6= xi+1 for i = 1, . . . , k
(we identify xk+1 with x1). Let Γ (Λ) denote the set of loops in Λ, and de�ne the
weight w(γ) of the loop γ by

w(γ) =
1

2k

k∏
i=1

Jxixi+1 . (2.13)

Interactions between loops take a rather simple form; they only depend on the
�local times� nx( · ), x ∈ Λ; these local times are given for one or many loops by
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nx(γ) = #{i = 1, . . . , k : xi = x},

nx(γ1, . . . , γn) =
n∑
i=1

nx(γi).
(2.14)

Let V : N→ R be the function that satis�es

e−V (n) =
Γ (N2 )

Γ (N2 + n)

(N
2

)n
. (2.15)

Notice that V (0) = V (1) = 0, and that V is increasing otherwise. The partition
function (2.12) is then equal to

Z(Λ) = C(N)|Λ| e−
1
2

∑
x,y∈Λ Jxy

∑
n≥0

Nn

n!

∑
γ1,...,γn∈Γ (Λ)

w(γ1) . . . w(γn)

· exp
{
−
∑
x∈Λ

V
(
nx(γ1, . . . , γn)

)}
. (2.16)

The constant above is equal to C(N) = 2πN/2+1/Γ (N/2) but it is not important.
This is indeed a gas of closed loops with �activity� w(γ) and with local interac-
tions. The correlation functions of the original spin model can be expressed in
terms of open paths and closed loops. The derivation of this representation is not
straightforward and we refer to [12; 16] for two di�erent methods. An amusing
remark is that the loop model is well-de�ned for all N ∈ R+; in the limit N ↘ 0,
correlations are given by self-avoiding walks.

Loop O(N) models are simpli�ed models where the weights pick up a factor
N , and the interactions are local and hard-core. On graphs (lattices) with degree
3, loop O(N) models correspond to a spin model where the Gibbs factor has been
approximated,

e
1
2

∑
x,y Jxyσx ·σy ≈

∏
x,y∈Λ

(
1 + 1

2Jxyσx ·σy
)
. (2.17)

See [31] for context and de�nitions, and for a discussion of the joint distribution
of the lengths of long loops.

2.4 Quantum Heisenberg models

Some quantum spin systems have loop representations with positive weights. We
describe here the loop representations that were progressively introduced in [1;
35; 37]. Let Λ denote the lattice, that is, a �nite subset of Zd. The Hilbert space
is

HΛ =
⊗
x∈Λ

C2S+1, (2.18)

where S ∈ 1
2N. We consider somewhat arti�cial pair interactions given by the

self-adjoint operators Tx,y, Px,y, and Qx,y, where x, y ∈ Λ are nearest-neighbours;
we give below their more familiar expressions in terms of spin operators. These
are operators on C2S+1 ⊗ C2S+1 de�ned as follows:
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� Tx,y is the transposition operator, Tx,y|ϕ〉 ⊗ |ψ〉 = |ψ〉 ⊗ |ϕ〉;
� Px,y is equal to (2S + 1) times the projector onto the spin singlet. If {|a〉},

a ∈ {−S, . . . , S−1, S} denotes a basis of C2S+1, then Px,y has matrix elements

〈a, b|Px,y|c, d〉 = (−1)a−cδa,−bδc,−d, (2.19)

where a, b, c, d ∈ {−S, . . . , S};
� Qx,y is as Px,y but without the minus signs, namely

〈a, b|Qx,y|c, d〉 = δa,bδc,d. (2.20)

The families of hamiltonians involve the parameter u ∈ [0, 1] and are given by

H
(u)
Λ = −

∑
{x,y}⊂Λ
‖x−y‖=1

(
uTx,y + (1− u)Qx,y − 1

)
,

H̃
(u)
Λ = −

∑
{x,y}⊂Λ
‖x−y‖=1

(
uTx,y + (1− u)Px,y − 1

)
.

(2.21)

Let Six denote the ith spin operator at site x; here, i = 1, 2, 3 and x ∈ Λ. In
the case S = 1

2 , the �rst hamiltonian is

H
(u)
Λ = −2

∑
{x,y}⊂Λ
‖x−y‖=1

(
S1
xS

1
y + (2u− 1)S2

xS
2
y + S3

xS
3
y − 1

4

)
. (2.22)

We get the usual spin 1
2 Heisenberg ferromagnet with u = 1; the quantum rotator

model, or quantum XY model, with u = 1
2 ; and we get a model that is unitarily

equivalent to the Heisenberg antiferromagnet with u = 0.
In the case S = 1 the second hamiltonian H̃(u)

Λ is more relevant and is given
by

H̃
(u)
Λ = −

∑
{x,y}⊂Λ
‖x−y‖=1

(
u
→
Sx ·

→
Sy + (

→
Sx ·

→
Sy)2 − 2

)
. (2.23)

We discuss the phase diagram of this model in Section 8; as will be explained there,
the Poisson-Dirichlet conjecture can be used to identify the nature of extremal
states at low temperatures.

We now describe the derivation of the loop model. The partition function can
be expanded using the Trotter product formula, which yields a sort of classical
model in one more dimension. Recall that a Poisson point process on the inter-
val [0, 1] describes the occurrence of independent events at random times. Let
u ≥ 0 be the intensity of the process. The probability that an event occurs in
the in�nitesimal interval [t, t+ dt] is udt; disjoint intervals are independent. Pois-
son point processes are relevant to us because of the following expansion of the
exponential of matrices:

exp
{
u

k∑
i=1

(Mi − 1)
}

=

∫
ρ(dω)

∏
(i,t)∈ω

Mi, (2.24)
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where ρ is a Poisson point process on {1, . . . , k} × [0, 1] with intensity u, and the
product is over the events of the realisation ω in increasing times. (To prove it,
use the Trotter product formula in the left side so as to get a discretised Poisson
process, which converges to the right side.) We actually consider an extension
where the time intervals are labeled by the edges of the lattice, and where two
kinds of events occur with respective intensities u and 1− u. Then

exp
{
−
∑
〈x,y〉

(
uM (1)

xy + (1− u)M (2)
xy − 1

)}
=

∫
ρ(dω)

∏
(x,y,i,t)∈ω

M (i)
xy . (2.25)

The product is over the events of ω in increasing times; the label i is equal to 1
if the event is of the �rst kind, and 2 if the event is of the second kind.

Let σ = (σx)x∈Λ, with σx ∈ {−S, . . . , S}, be a �classical spin con�guration�,
and let |σ〉 = ⊗x∈Λ|σx〉 denote the elements of the orthonormal basis of HΛ where
S3
x are diagonal. Applying the Poisson expansion (2.25), we get

Tr e−
∑
〈x,y〉(uTxy+(1−u)Qxy−1) =

∫
ρ(dω)

∑
σ1,...,σk

〈σ1|M (ik)
xkyk
|σk〉〈σk|M (ik−1)

xk−1yk−1
|σk−1〉 . . . 〈σ2|M (i1)

x1y1 |σ1〉. (2.26)

Here, (x1, y1, i1), . . . , (xk, yk, ik) are the events of the realisation ω in increasing
times. The number of events k is random.

0 ΛΛ

β β

0

Fig. 4: Graphs and realisations of Poisson point processes, and their loops. In both
cases, the number of loops is |L(ω)| = 2.

This expansion has a convenient graphical description. Namely, we view ρ(dω)
as the measure of a Poisson point process for each edge of Λ, where �crosses� occur
with intensity u and �double bars� occur with intensity 1−u. In order to �nd the
loop that contains a given point (x, t) ∈ Λ × [0, β], one can start by moving
upwards, say, until one meets a cross or a double bar. Then one jumps onto the
corresponding neighbour; if the transition is a cross, one continues in the same
vertical direction; if it is a double bar, one continues in the opposite direction. The
vertical direction has periodic boundary conditions. See Fig. 4 for an illustration.

The sum over |σi〉 is then equivalent to assigning independent labels to each
loop. Indeed, in (2.26), the matrix elements of Txy and Qxy force the spin values
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to stay constant along the loops at each cross and at each double bar. This is
illustrated in Fig. 5.
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Fig. 5: Illustration for a realisation of the process ρ(dω) and a compatible space-time
spin con�guration. Here, one considers the case S = 1, where spin values belong to
{−1, 0, 1}.

We then obtain an expression for the partition function, namely

Z
(u)
Λ = TrHΛ e−βH

(u)
Λ =

∫
ρ(dω)

∑
σ:ω

1 =

∫
(2S + 1)|L(ω)|ρ(dω). (2.27)

The sum in the middle term is over a spin assignment to each loop; there are
exactly 2S + 1 possibilities for each loop, hence the result. Let P(u)

Λ denote the
probability with respect to the measure 1

ZΛ
(2S+1)|L(ω)|ρ(dω). The spin-spin cor-

relation function can be calculated using the same expansion as for the partition
function. We get

TrS3
xS

3
y e−βH

(u)
Λ =

∫
ρ(dω)

∑
σ:ω

σx,0σy,0. (2.28)

The sum is over all possible labels for the loops, and σx,0 denotes the label at site
x and time 0. The sum is zero unless x and y belong to the same loop (at time
0), in which case one can check that it gives 1

3S(S + 1)(2S + 1)|L(ω)|. Then

〈S3
xS

3
y〉 =

1

Z
(u)
Λ

TrS3
xS

3
y e−βH

(u)
Λ = 1

3S(S + 1)P(u)
Λ

(
x↔ y

)
. (2.29)

The correlation function 〈S1
xS

1
y〉 is equal to 〈S3

xS
3
y〉 by spin symmetry, but cor-

relations 〈S2
xS

2
y〉 are di�erent. In order to �nd the loop equivalent for the latter cor-

relation, we write a similar expansion but with additional factors 〈σx,0−|S2
x|σx,0+〉

and 〈σy,0−|S2
y |σy,0+〉. These factors force (x, 0) and (y, 0) to be in the same loop.
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0 x

(b)(a)

0 x

Fig. 6: Illustration for the two-point correlation function 〈S2
xS

2
y〉, as expressed

in (2.30).

Now recall that S2
x = 1

2i (S
+
x −S−x ) while S1

x = 1
2 (S+

x +S−x ). If the loop connection
is as in Fig. 6 (a), there is one factor with S+ and one factor with S− (on either
site) , resulting in −i2 times the same contribution as for S1. On the other hand,
if the connection is as in Fig. 6 (b), both factors involve S+ or both involve S−,
and the contribution is i2 times that of S1. We �nd

〈S2
xS

2
y〉 = 1

3S(S + 1)
[
P(u)
Λ

(
x y

)
− P(u)

Λ

(
x y

)]
.

(2.30)

The representation for the family with hamiltonian H̃(u)
Λ is similar, but with a

few important di�erences. Instead of being constant along loops, the spin values
change signs at double bars, that is, when the vertical direction of the trajectory
changes. The minus signs in the matrix elements of Pxy cancel when S ∈ N, but
the representation for half-integer spins has unwelcome signs. See [38] for more
details.

The model with u = 1 involves random permutations and is also known as the
random interchange model, or random stirring. There exist mathematical studies
on the complete graph [4; 10; 11; 33] and on the hypercube [29].

3 Universal behaviour of loop soups

Consider an arbitrary loop soup model with the following mathematical structure.
To each outcome (loop con�guration) corresponds a set of k loops (k varies) with
lengths `1, . . . `k. We assume that loops have been ordered so that `1 ≥ `2 ≥ · · · ≥
`k; the loops occupy a domain of volume V =

∑k
i=1 `i. We let PV and EV denote

the probability measure and expectation of this loop soup. We also suppose that
there is a notion of in�nite-volume limit V →∞. The following vector is a random
partition of the interval [0, 1]: (`1

V
,
`2
V
, . . . ,

`k
V

)
. (3.1)
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We call a loop macroscopic if `i ∼ V , and microscopic if `i ∼ 1; it is mesoscopic
otherwise, that is, if 1� `i � V .

There are two conjectures. The �rst one states that macroscopic loops occupy
a �xed portion of the volume, and that microscopic loops occupy the rest; there
are certainly mesoscopic loops as well, but they occupy a negligible fraction of
the volume. Let us emphasise that this conjecture is expected to be relevant in
dimensions 3 and more (and also in the ground state of two-dimensional quantum
systems); it is not expected to hold in loop soups of dimensions 1 and 2.

Conjecture 6.1. There exists m ∈ [0, 1] such that for every ε > 0:

lim
n→∞

lim
V→∞

PV
( n∑
i=1

`i
V
∈ [m− ε,m+ ε]

)
= 1;

lim
n→∞

lim
V→∞

PV
( ∑
i≥1:`i<n

`i
V
∈ [1−m− ε, 1−m+ ε]

)
= 1.

It follows from this conjecture that typical partitions have the form displayed
in Fig. 7, with m almost always taking the same value.

macroscopic, PD(ϑ) microscopic

m

Fig. 7: A typical partition of a loop soup model in dimensions three and higher. The
partition in the interval [0,m] follows a Poisson-Dirichlet distribution; the partition in
the interval [m, 1] consists of microscopic elements. Elements of intermediate size occupy
a vanishing interval.

The second conjecture states that the lengths of macroscopic loops are given
by a Poisson-Dirichlet distribution for a suitable parameter ϑ. (This family of
distributions is introduced in Section 4.) This conjecture can be stated in di�erent
ways, we suggest three of them.

Conjecture 6.2. Assume that m > 0 in Conjecture 6.1. Then there is ϑ ∈ (0,∞)
such that the following three claims hold true.

1. For any �xed n, the joint distribution of the vector
(
`1
mV , . . . ,

`n
mV

)
converges as

V →∞ to the joint distribution of the �rst n elements of a random partition
with PD(ϑ) distribution.

2. For any n ∈ N and any a1, . . . , an > 1 the moments of
(
`1
mV , . . . ,

`n
mV

)
converge

as V →∞ to the moments of PD(ϑ); precisely,

lim
V→∞

EV
( ∑
j1,...,jn≥1

distinct

( `j1
mV

)a1
. . .
( `jn
mV

)an)
=
ϑn Γ (ϑ)Γ (a1) . . . Γ (an)

Γ (ϑ+ a1 + · · ·+ an)
.
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3. Let f be a di�erentiable function [0, 1]→ R such that f(0) = 1 and f ′(0) = 0.
Then

lim
V→∞

EV
(∏
j≥1

f
( `j
V

))
= EPD(ϑ)

(∏
j≥1

f(mXj)
)
.

Notice that in part (2), the ais cannot be less than 1 (the limit would diverge),
and cannot be equal to 1 either (the sum

∑
j
`j
mV gives 1/m instead of 1); with

ai > 1, the contribution of microscopic loops vanishes in the limit V → ∞. The
formula for the moment was derived in [31] in the context of O(N) loop models
using �supersymmetric� calculations.

In order to understand the part (3) of the conjecture, let us take f(x) = ex
2

;
then

EV
(∏
j≥1

f
( `j
V

))
= EV

(
e
∑
j≥1(

`j
V )2

)
. (3.2)

The number of microscopic loops is of order V and each contributes ∼ 1/V 2, so
they can be neglected; the expectation picks up macroscopic loops only. This form
of the conjecture is very useful for the study of symmetry breaking in quantum
spin systems; see Section 7.

As mentioned before, the �rst hint of a universal behaviour was found in a
numerical study of lattice permutations [21]. These conjectures were �rst made in
[24]. An important article is Schramm's study of the random interchange model
on the complete graph [33]; it owes much to a heuristics originally proposed by
Aldous, based on the split-merge process. There is now much evidence for the
validity of Conjectures 1 and 2. This has been established in the annealed model
of spatial permutations in a mathematically rigorous fashion [9]. It is also backed
by numerical studies for the model of lattice permutations [25]; for loop O(N)
models [31]; and for the random loop models of Section 2.4 [3].

4 Random partitions and Poisson-Dirichlet distributions

The lengths of long loops have the mathematical structure of random partitions.
Recall that a partition of the interval [0,m] is a (�nite or in�nite) sequence of
decreasing positive numbers (λ1, λ2, . . . ) such that

∑
j≥1 λj = m. We will also

consider sequences of positive numbers that are not necessarily decreasing; we
still call such a sequence an (unordered) partition.

We review the mathematical notions and relevant properties.

4.1 Residual allocation, or stick breaking construction

Let ν1 be a probability measure on the interval [0, 1]; we assume that it has a
continuous probability density function. For m > 0, we denote νm the rescaled
measure on [0,m], that is, it satis�es Pν1(X < s) = Pνm(X < ms) for s ∈ [0, 1].

We construct a random sequence of positive numbers X1, X2, . . . with the
following induction:
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� Choose X1 according to ν1.
� Choose X2 according to ν1−X1

; notice that X2

1−X1
has distribution ν1.

� Choose X3 according to ν1−X1−X2
; notice that X3

1−X1−X2
has distribution ν1.

� Etc...

This gives a sequence of positive numbers (X1, X2, . . . ) that tends to 0 and such
that

∑
j≥1Xj = 1. This is an unordered random partition of [0, 1].

Let the random numbers Y1, Y2, . . . be de�ned from the Xis by

Y1 = X1;

Y2 = X2

1−X1
;

Y3 = X3

1−X1−X2
;

etc...

(4.1)

As noticed above, the Yis are independent and identically distributed with distri-
bution ν1. Further, the following equation is easy to verify:

1−X1 − ...−Xk+1 = (1−X1 − ...−Xk)
(
1− Xk+1

1−X1−...−Xk

)︸ ︷︷ ︸
1−Yk+1

. (4.2)

It follows by induction that

1−X1 − · · · −Xk = (1− Y1) . . . (1− Yk), (4.3)

which allows to invert the relations (4.1)

X1 = Y1;

X2 = (1− Y1)Y2;

X3 = (1− Y1)(1− Y2)Y3;

etc...

(4.4)

Consider a random partition of [0, 1] obtained through the stick breaking con-
struction above, and two random numbers T,U ∈ [0, 1] (independent, uniformly
distributed). What is the probability that they fall in the same partition element?
This calculation can be performed, and the result turns out to be useful. Recall
that the probability of an event is equal to the expectation of the indicator func-
tion on this event. Let PRA(ν1) and ERA(ν1) denote the probability and expectation
of random partitions distributed according to residual allocation with measure ν1

on [0, 1]. We have

PRA(ν1)(T,U ∈ kth partition element) =

∫ 1

0

dt

∫ 1

0

du ERA(ν1)

(
1t∈Xk1u∈Xk

)
= ERA(ν1)(X

2
k)

= ERA(ν1)

(
(1− Y1)2 . . . (1− Yk−1)2Y 2

k

)
= Eν1

(
(1− Y )2

)k−1Eν1(Y 2).

(4.5)



6 Universal Behaviour of 3D Loop Soup Models 79

The latter identity is due to the independence of the random variables Y1, Y2, . . .
The sum over k is a geometric series, and one obtains a useful expression:

PRA(ν1)(T,U ∈ same partition element) =
(

2
Eν1Y
Eν1Y 2

− 1
)−1

. (4.6)

The case that is relevant for our purpose is when ν1 is a Beta(ϑ) random
variable. That is, the random number Y has distribution Beta(ϑ) if

Pν1(Y > s) = (1− s)ϑ, (4.7)

for 0 ≤ s ≤ 1. Its probability density function is ϑ(1− s)ϑ−1, so that

Eν1(f(Y )) =

∫ 1

0

f(s)ϑ(1− s)ϑ−1ds. (4.8)

The residual allocation model where ν1 is the measure of a Beta(ϑ) random vari-
able, is called the Gri�ths-Engen-McCloskey GEM(ϑ) distribution. It ap-
pears in mathematical biology. Rearranging the unordered partition (X1, X2, . . . )
in decreasing order, we get a random partition with Poisson-Dirichlet PD(ϑ)
distribution.

4.2 Kingman's representation of Poisson-Dirichlet

We now discuss another expression of the Poisson-Dirichlet distribution that is
due to Kingman [28]. It is useful in order to calculate moments.

Let Z1, . . . , Zk be i.i.d. random variables with Gamma(ϑk , 1) distribution (that

is, their probability density function is s
ϑ
k−1 e−s /Γ (ϑk ) for 0 ≤ s < ∞). Let

S = Z1 + · · ·+ Zk. Consider the sequence(Z1

S
, . . . ,

Zk
S

)
(4.9)

and reorder it in decreasing order, so it forms a random partition of [0, 1]. As k →
∞, this partition turns out to converge to PD(ϑ). The following two observations
are keys to our calculations:

� S is a Gamma(ϑ, 1) random variable;
� S is independent of (Z1

S , . . . ,
Zk
S ).

The �rst observation is easy to verify. As for the second observation, we have for
arbitrary functions f : R→ R and g : Rk → R,

E{Zi}ki=1

(
f(S) g

(
Z1

S , . . . ,
Zk
S

))
=

∫ ∞
0

dz1 . . . dzk

k∏
i=1

z
ϑ
k−1
i e−zi

Γ (ϑk )
f
(∑

zi

)
g
(
z1∑
zi
, . . . , zk∑

zi

)
=

∫ ∞
0

ds

∫ ∞
0

dz1 . . . dzk

k∏
i=1

z
ϑ
k−1
i e−zi

Γ (ϑk )
f(s)g

(
z1
s , . . . ,

zk
s

)
δ
(
s−

∑
zi

)

=

∫ ∞
0

ds sϑ e−s f(s)

∫ ∞
0

dy1 . . . dyk

k∏
i=1

y
ϑ
k−1
i

Γ (ϑk )
g(y1, . . . , yk) δ

(
s
(
1−

∑
yi
))
.

(4.10)
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We made the change of variables yi = zi/s. We now use δ(sx) = 1
sδ(x),

which can be seen using such representation of the Dirac function as δ(x) =

limn→∞
√

n
π e−nx

2

. We get

E{Zi}ki=1

(
f(S) g

(
Z1

S , . . . ,
Zk
S

))
=

∫ ∞
0

ds
sϑ−1 e−s

Γ (ϑ)
f(s)

·Γ (ϑ)

∫ ∞
0

dy1 . . . dyk

k∏
i=1

y
ϑ
k−1
i

Γ (ϑk )
g(y1, . . . , yk) δ

(
1−

∑
yi

)
. (4.11)

The �rst line of the right side is equal to EGamma(ϑ,1)(f). The second line of the
right side does not depend on s; by looking at the special case f ≡ 1, this must
be equal to the expectation of the function g.

We check in Section 5 that the ordered sequence has Poisson-Dirichlet distri-
bution with parameter ϑ in the limit k →∞.

4.3 Moments of the Poisson-Dirichlet distribution

For given integers n1, . . . , n` ≥ 0, using the independence of S from the partition,
we have

EPD(ϑ)

( ∑
j1,...,j`≥1

distinct

Xn1
j1
. . . Xn`

j`

)
= lim
k→∞

k!

(k − `)!
E{Zi}ki=1

((Z1

S

)n1

. . .
(Z`
S

)n`)

= lim
k→∞

k!

(k − `)!
E{Zi}ki=1

(
Sn1+···+n`(Z1

S )n1 . . . (Z`S )n`
)

E{Zi}ki=1
(Sn1+···+n`)

= lim
k→∞

k!

(k − `)!
Γ (ϑ)E{Zi}ki=1

(
Zn1

1 . . . Zn``
)

Γ (ϑ+ n1 + · · ·+ n`)
.

(4.12)

We also used E{Zi}ki=1
(Sa) = Γ (ϑ+ a)/Γ (ϑ). Since the Zis are independent,

E{Zi}ki=1

(
Zn1

1 . . . Zn``
)

=
∏̀
i=1

Γ (ϑ/k + ni)

Γ (ϑ/k)
. (4.13)

Recall that Γ (ϑ/k) ∼ k/ϑ as k →∞, so that k!
(k−`)!Γ (ϑ/k)`

→ ϑ`. We obtain

EPD(ϑ)

( ∑
j1,...,j`≥1

distinct

Xn1
j1
. . . Xn`

j`

)
=
ϑ` Γ (ϑ)Γ (n1) . . . Γ (n`)

Γ (ϑ+ n1 + · · ·+ n`)
. (4.14)

This important formula appears in [31]. Its derivation there is di�erent; it involves
another loop soup model, assumes the presence of Poisson-Dirichlet, and uses a
�supersymmetry� method.
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4.4 Expectation of functions of partition elements

We now consider the Poisson-Dirichlet expectation of a general smooth function f
that satis�es f(0) = 1. Let (ak)k≥1 be Taylor coe�cients such that the following
function has radius of convergence greater than 1:

f(s) = 1 +
∑
k≥1

aks
k. (4.15)

Then, using (4.14),

EPD(ϑ)

(∏
i≥1

f(Xi)
)

=
∑
n≥0

1

n!

∑
i1,...,in≥1

distinct

∑
k1,...,kn≥1

ak1 . . . aknEPD(ϑ)

(
Xk1
i1
. . . Xkn

in

)

=
∑
n≥0

1

n!

∑
k1,...,kn≥1

ak1 . . . akn
ϑn Γ (ϑ)Γ (k1) . . . Γ (kn)

Γ (ϑ+ k1 + · · ·+ kn)

(4.16)

Let us apply this formula to a special case that will be useful in Section 8,
namely f(s) = cosh(bs) with b a parameter. The Taylor coe�cients are

ak =

{
bk

k! if k is even,

0 if k is odd.
(4.17)

Then

EPD(ϑ)

(∏
i≥1

cosh(bXi)
)

= 1 +
∑
n≥1

ϑn

n!

∑
k1,...,kn≥2

even

1

k1 . . . kn

Γ (ϑ)

Γ (ϑ+
∑
i ki)

b
∑
i ki

= 1 +
∑
n≥1

ϑn

n!

∑
r≥n

∑
`1,...,`n≥1
`1+···+`n=r

1

2n`1 . . . `n

Γ (ϑ)

Γ (ϑ+ 2r)
b2r

= 1 +
∑
r≥1

Γ (ϑ)b2r

Γ (ϑ+ 2r)

r∑
n=1

(ϑ/2)n

n!

∑
`1,...,`n≥1
`1+···+`n=r

1

`1 . . . `n

=
1

Γ (ϑ/2)

∑
r≥0

Γ (ϑ/2 + r)

r!Γ (ϑ+ 2r)
b2r.

(4.18)

We used the identity

r∑
n=1

θn

n!

∑
`1,...,`n≥1
`1+···+`n=r

1

`1 . . . `n
=
Γ (θ + r)

r!Γ (θ)
. (4.19)



82 Daniel Ueltschi

5 Random permutations

Random permutations provide a convenient mean to understanding random par-
titions, their distributions, and the split-merge process. We should point out that,
in this section and the next one, there is no space � we are dealing with mean-
�eld models. This is nonetheless directly relevant to spatial systems in dimensions
three or larger, as is explained in Section 7.

5.1 The Ewens distribution and natural extensions

We consider four ensembles of random permutations, with �xed or variable num-
ber of elements and number of cycles. Let Skn denote the set of permutations of n
elements and k cycles, and let

Sn =

n⋃
k=1

Skn, Sk =
⋃
n≥1

Skn, S =
⋃
n≥1

n⋃
k=1

Skn. (5.1)

Given a permutation σ ∈ S, we let N(σ) and K(σ) denote its number of elements
and its number of cycles, respectively. It is worth recalling that the number of
permutations with n elements and k (labelled) cycles of lengths m1, . . . ,mk is
equal to (

n
m1 . . .mk

) k∏
i=1

(mi − 1)! =
n!

m1 · · ·mk
. (5.2)

The sets Skn, Sn, Sk, and S are reminiscent of the microcanonical, canoni-
cal, and grand-canonical ensembles of particle systems in statistical physics, with
number of elements and cycles playing a somewhat similar rôle as energy and
number of particles. We consider probability distributions on these sets, namely

Pn,k(σ) =
1

n!Zn,k
for σ ∈ Skn; (5.3)

Pn,θ(σ) =
1

n!Zn,θ
θK(σ) for σ ∈ Sn; (5.4)

Pz,k(σ) =
1

Zz,k

zN(σ)

N(σ)!
for σ ∈ Sk; (5.5)

Pz,θ(σ) =
1

Zz,θ

zN(σ)θK(σ)

N(σ)!
for σ ∈ S. (5.6)

The second distribution, Pn,θ, is the Ewens distribution that initially appeared in
mathematical biology. These distributions are related as follows:

Pn,θ( · |K(σ) = k) = Pn,k( · ); (5.7)

Pz,k( · |N(σ) = n) = Pn,k( · ); (5.8)

Pz,θ( · |N(σ) = n) = Pn,θ( · ); (5.9)

Pz,θ( · |K(σ) = k) = Pz,k( · ); (5.10)

Pz,θ( · |N(σ) = n,K(σ) = k) = Pn,k( · ). (5.11)



6 Universal Behaviour of 3D Loop Soup Models 83

The last three normalisations can be calculated explicitly. Using Eq. (5.2), we
have

Zz,θ =
∑
n≥1

zn

n!

∑
σ∈Sn

θK(σ)

=
∑
n≥1

zn

n!

∑
k≥1

θk

k!

∑
m1,...,mk≥1
m1+···+mk=n

n!

m1 . . .mk

=
∑
k≥1

θk

k!

(∑
m≥1

zm

m

)k
= exp

(
−θ log(1− z)

)
− 1

= (1− z)−θ − 1.

(5.12)

We have the relations

Zz,θ =
∑
n≥1

znZn,θ =
∑
k≥1

θkZz,k, (5.13)

so we get Zn,θ by di�erentiating n times with respect to z, and we get Zz,k by
looking at the kth coe�cient in the middle line of Eq. (5.12); explicitly,

Zn,θ =
θ(θ + 1) . . . (θ + n− 1)

n!
=
nθ−1

Γ (θ)

(
1 + o(1)

)
, (5.14)

Zz,k =
1

k!

(
− log(1− z)

)k
. (5.15)

The �rst normalisation, Zn,k does not have an explicit expression. The numbers
n!Zn,k are known as Stirling numbers of the �rst kind. The following asymptotic
behaviour is useful for our purpose; if k = λ log n, we have [26]

Zn,k =
1

Γ (1 + λ)

(log n)k−1

n (k − 1)!

(
1 + o(1)

)
. (5.16)

The relevant limits are

� n, k →∞ with k = θ log n for some �xed parameter θ;
� n→∞ with �xed θ;
� k →∞ and z → 1− with z = e− e−k/θ for some �xed parameter θ;
� z → 1− with �xed θ.

We now check that, as z → 1− with Pz,θ, the number of elements diverges like
(− log z)−1 and, in this scaling, behaves like a Gamma random variable; see Eq.
(5.19) below. First,

Pz,θ(N(σ) ≤ a
− log z ) =

1

Zz,θ

a/−log z∑
n=1

znZn,θ. (5.17)

As z → 1−, only large n contribute to the sum and we can use the asymptotics
in (5.14). We get
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lim
z→1−

Pz,θ(N(σ) ≤ a
− log z ) = lim

z→1−

(1− z)θ

Γ (θ)

a/−log z∑
n=1

nθ−1zn

= lim
z→1−

(1− z)θ

Γ (θ)

∫ a/−log z

0

sθ−1 e−(log z)s ds

= lim
z→1−

( 1− z
− log z

)θ 1

Γ (θ)

∫ a

0

sθ−1 e−s ds.

(5.18)

We obtain that N(σ) is a Gamma random variable multiplied by (− log z)−1;
namely, we have for all a > 0 that

lim
z→1−

Pz,θ(N(σ) ≤ a
− log z ) =

1

Γ (θ)

∫ a

0

sθ−1 e−s ds. (5.19)

A similar statement holds with Pz,k with suitable limits z → 1− and k →∞.

Let z(k) = e− e−k/θ .

Pz(k),k(N(σ) ≤ a ek/θ ) =
a ek/θ∑
n=1

z(k)nZn,k
Zz(k),k

=
(
1 + o(1)

) a ek/θ∑
n=1

e−n e−k/θ (log n)k−1

n (k − 1)!

1

Γ (θ + 1)

k!

(k/θ)k
.

(5.20)

We used the asymptotic result (5.16) and also

Zz(k),k =
1

k!

(k
θ

)k(
1 +O( e−k/θ )

)
. (5.21)

This can be justi�ed by �rst showing that K(σ)/θ logN(σ) tends to 1 with prob-
ability 1; this is not too di�cult, but we do not write it down here. Then

Pz(k),k(N(σ) ≤ a ek/θ ) =
(
1 + o(1)

) θ

Γ (θ + 1)

a ek/θ∑
n=1

e−n e−k/θ
(θ log n

k

)k−1 1

n

=
(
1 + o(1)

) 1

Γ (θ)

∫ a ek/θ

0

(θ log n

k

)k−1

e−n e−k/θ dn

=
(
1 + o(1)

) 1

Γ (θ)

∫ a

0

1

s

(
1 +

θ log s

k

)k−1

︸ ︷︷ ︸
→sθ

e−s ds.

(5.22)

We obtain that N behaves like a Gamma(θ, 1) random variable multiplied by
ek/θ : For a > 0,

lim
k→∞

Pz(k),k(N(σ) ≤ a ek/θ ) =
1

Γ (θ)

∫ a

0

sθ−1 e−s ds. (5.23)

We now verify that the distribution of cycle lengths is asymptotically equiv-
alent to i.i.d. Gamma( θk , e−k/θ ) random variables. Together with the result of



6 Universal Behaviour of 3D Loop Soup Models 85

the next subsection, this justi�es Kingman's representation of Poisson-Dirichlet
described in Section 4.2.

The probability to obtain a permutation with k cycles of lengths m1, . . . ,mk

is, with n =
∑k
i=1mi,

Pz(k),k(m1, . . . ,mk) =
(
1 + o(1)

) k!

(kθ)k
z(k)n

n!

n!

k!m1 . . .mk

=
(
1 + o(1)

) 1

(k/θ)k

k∏
i=1

e−mi e−k/θ

mi
.

(5.24)

We used Eqs (5.2) and (5.21).
On the other hand, the probability that k i.i.d. Gamma( θk , e−k/θ ) random

variables take values in [m1,m1 + 1], . . . , [mk,mk + 1] is equal to

(
1 + o(1)

) k∏
i=1

m
θ
k−1
i

Γ (θ/k)
e−mi e−k/θ . (5.25)

In order to match this with (5.24), observe that

log

k∏
i=1

m
θ
k
i = θ

k

k∑
i=1

logmi

≈ θEGamma( θk , e
−k/θ ) logX

= θψ( θk ) + k,

(5.26)

where ψ( · ) = Γ ′( · )/Γ ( · ) is the digamma function. For large k, we have the
asymptotics

Γ ( θk )k =
(
k
θ

)k
e−θγ

(
1 + o(1)

)
,

ψ( θk ) = −kθ − γ + o(1).
(5.27)

Here, γ is Euler-Mascheroni constant. Using (5.26) and (5.27) in (5.25), we get
Eq. (5.24). This shows that the random partition from (Z1

S , . . . ,
Zk
S ) has asymp-

totically the same distribution as the one from the cycle lengths of a random
permutation distributed according to Pz(k),k. There remains to check that the
latter has Poisson-Dirichlet distribution.

5.2 Cycle structure of Ewens permutations

Given σ ∈ S, let L1(σ) be the length of the cycle that contains the element 1;
L2(σ) the length of the cycle that contains the smallest element that is not in
the �rst cycle; L3(σ) the length of the cycle that contains the smallest element
that is not in the �rst two cycles; etc... Then

∑K(σ)
i=1 Li(σ) = N(σ) for all σ ∈ S,

and ( L1

N(σ) , . . . ,
LK(σ)

N(σ) ) is an unordered partition of [0, 1]. It turns out that, if σ is
chosen randomly according to the measures (5.3)�(5.6), and taking appropriate
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limits, the distribution of cycle lengths converges to GEM. This is well-known in
the case of the Ewens measure (5.4), see [2], and we show it here for the other
distributions.

We start with the distribution with �xed n, k given in (5.3); we take k = θ log n
and consider the limit n→∞. The �rst step is to show that L1/n converges to a
Beta random variable with parameter θ. We have

Pn,k
(L1(σ)

n
≤ a

)
=

an∑
j=1

(
n− 1
j − 1

)
(j − 1)!

Zn−j,k−1

Zn,k
(n− j)!

=
1

n

an∑
j=1

Zn−j,k−1

Zn,k

=
1

n

an∑
j=1

(log(n− j))k−2

(n− j)(k − 2)!

1

Γ (1 + θ)

n(k − 1)!

(log n)k−1
Γ (1 + θ)

(
1 + o(1)

)
=

an∑
j=1

k − 1

n− j
1

log n

( log n+ log(1− j
n )

log n

)k−2(
1 + o(1)

)
.

(5.28)

We used the asymptotic result (5.16). We have k−1
logn = θ(1 + o(1)) and

( log n+ log(1− j
n )

log n

)k−2

= eθ log(1− j
n )
(
1 + o(1)

)
=
(
1− j

n

)θ(
1 + o(1)

)
. (5.29)

We get

Pn,k
(L1(σ)

n
≤ a

)
=
θ

n

an∑
j=1

(
1− j

n

)θ−1(
1 + o(1)

)
n→∞
−→ θ

∫ a

0

(1− s)θ−1ds.

(5.30)

The latter expression is indeed equal to PBeta(θ)(X ≤ a). Next, we consider the
joint distribution of the lengths of the �rst j cycles; we keep j �xed and take the
limit n→∞. We have

Pn,k
(L1(σ)

n
≤ a1, . . . ,

Lj(σ)

n− L1 − · · · − Lj−1
≤ aj

)
=

a1n∑
m1=1

· · ·
aj(n−m1−···−mj−1)∑

mj=1

Pn,k(L1 = m1, . . . , Lj = mj)

=

a1n∑
m1=1

· · ·
aj(n−m1−···−mj−1)∑

mj=1

Pn,k(L1 = m1, . . . , Lj−1 = mj−1)

·Pn,k(Lj = mj |L1 = m1, . . . , Lj−1 = mj−1).

(5.31)

We now use self-similarity for the last term; having determined the lengths of the
�rst j − 1 cycles, the distribution of the length of the jth cycles is the same but
with less elements:
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Pn,k(Lj ≤ aj(n−m1 − · · · −mj−1|L1 = m1, . . . , Lj−1 = mj−1)

= Pn′,k′(Lj ≤ ajn′), (5.32)

with n′ = n − m1 − · · · − mj−1 and k′ = k − j + 1. Since j is �xed, the limit
k = θ log n→∞ corresponds to k′ = θ log n′ →∞; using the above result (5.30),
we have

lim
k,n→∞
k=θ logn

Pn′,k′(Lj ≤ ajn′) = PBeta(θ)(X ≤ aj). (5.33)

This allows to prove by induction that

lim
k,n→∞
k=θ logn

Pn,k
(L1(σ)

n
≤ a1, . . . ,

Lj(σ)

n− L1 − · · · − Lj−1
≤ aj

)

=

j∏
i=1

PBeta(θ)(X ≤ ai). (5.34)

This means that the joint distribution of (L1

n ,
L2

n , . . . ) is GEM(θ).
As pointed out before, the same result holds with the distribution Pn,θ on Sn.

This can be extended to the measure Pz,θ on S in the limit z =→ 1−. Indeed, we
have

Pz,θ
(L1

N
≤ a1, . . . ,

Lj
N − L1 − · · · − Lj−1

≤ aj
)

=
∑
n≥1

Pz,θ(N = n)Pn,θ
(L1

n
≤ a1, . . . ,

Lj
n− L1 − · · · − Lj−1

≤ aj
)
.

(5.35)

We have seen that N(σ) diverges as z → −1 (as (− log z)−1), so only large n
matter, for which the conditional probability approaches the product of Beta
probabilities.

6 Split-merge process

The split-merge process, also called coagulation-fragmentation, is a discrete-time
stochastic process on the set of partitions of the interval [0, 1]. It involves two pa-
rameters gs, gm ∈ [0, 1]. Given a partition (λ1, λ2, . . . ) at time t ∈ N, the partition
at time t + 1 is obtained as follows. Choose two numbers in [0, 1], uniformly at
random. Then

� if they fall in the same partition element, we split this element with probability
gs, uniformly;

� if they fall in distinct partition elements, we merge these elements with prob-
ability gm.

After rearranging in decreasing order, we get the partition for time t + 1. This
process is illustrated in Fig. 8.
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Fig. 8: Illustration for the split-merge process. This sequence involves a merge; a split;
another split; another merge.

There is a continuous-time equivalent process, where an element λj splits at
rate λ2

jgs; and elements λi, λj (with i 6= j) merge at rate 2λiλjgm. This means
that if (λ1, λ2, . . . ) is the partition at time t ∈ [0,∞), then during the tiny interval
[t, t+ dt],

� λj splits with probability λ2
jgsdt;

� λi, λj (with i 6= j) merge with probability 2λiλjgmdt;
� no changes occur with probability 1−

∑
j≥1 λ

2
jgsdt−

∑
i<j 2λiλjgmdt.

We now check that the invariant measure of the split-merge process is Poisson-
Dirichlet with parameter ϑ = gs/gm. We �rst give an indirect proof using a process
on permutations; the invariant measure is Ewens; when projected onto partitions,
in the limit of in�nitely-many elements, we get the split-merge process and the
GEM or PD distributions. The second proof is more direct but it is more cum-
bersome and we only discuss it in the case gs = gm = 1. Relevant references for
this section include [5; 14; 33; 36].

6.1 Markov process on Sn

Let τij denote the transposition of elements i, j ∈ {1, . . . , n}. Recall that K(σ) is
the number of cycles of the permutation σ. One easily checks that, if i, j belong
to distinct cycles of σ, then i, j belong to the same cycle of τij ◦ σ; conversely, if
i, j belong to the same cycle of σ, then i, j belong to distinct cycles of τij ◦ σ. We
always have K(τij ◦ σ) = K(σ)± 1.

The process we consider is a simple process that involves products of trans-
positions. Let σt denote the permutation at time t. Choose i, j ∈ {1, . . . , n} at
random, with i 6= j.

� If τij spits a cycle, i.e. K(τij ◦ σt) = K(σt) + 1, then σt+1 = τij ◦ σ with
probability gs; σt+1 = σ otherwise.

� If τij merges two cycles, i.e. K(τij ◦ σt) = K(σt)− 1, then σt+1 = τij ◦ σ with
probability gm; σt+1 = σ otherwise.
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The transition matrix is

T (σ; τij ◦ σ) =
1

1
2n(n− 1)

{
gs if K(τij ◦ σt) = K(σt) + 1,

gm if K(τij ◦ σt) = K(σt)− 1,
(6.1)

and T (σ;σ) = 1 −
∑
i<j T (σ; τij ◦ σ). Let pt(σ) denote the probability of the

permutation σ at time t; the probability at time t+ 1 satis�es

pt+1(σ) = pt(σ)T (σ;σ) +
∑
i<j

pt(τij ◦ σ)T (τij ◦ σ;σ). (6.2)

Indeed, τij ◦ σ is the permutation that gives σ if we apply τij . The measure pt
is invariant if pt+1 = pt. A su�cient condition for this is that it satis�es the
detailed balance condition

p(σ)T (σ; τij ◦ σ) = p(τij ◦ σ)T (τij ◦ σ;σ). (6.3)

Indeed, inserting this identity in (6.2) yields pt+1 = pt.
One easily checks that the Ewens measure Pn,θ = 1

Zn,θ
θK(σ) satis�es the de-

tailed balance condition: Assume that K(τij ◦ σ) = K(σ) + 1; then

Pn,θ(τij ◦σ)T (τij ◦σ;σ) = θPn,θ(σ)
1

1
2n(n− 1)

gm = θ
gm

gs
Pn,θ(σ)T (σ; τij ◦σ). (6.4)

This is identical to (6.3) provided θ =
gs

gm
. The same argument applies to the

case K(τij ◦ σ) = K(σ)− 1.
Permutations of Sn can be projected onto set partitions on {1, . . . , n}, with sets

given by permutation cycles. The Markov process above gives a Markov process
on set partitions: Choose i, j ∈ {1, . . . , n}, i 6= j; if they fall in the same set,
we split it with probability gs; if they fall in distinct sets, we merge them with
probability gm.

Further, set partitions can projected onto integer partitions, according to the
cardinalities of the sets. The Markov process gives a split-merge process that is
still Markov and is a discretised version of the one described above. Dividing the
elements by n, and letting n→∞, we recover the standard split-merge process.

As n→∞, the cycle lengths of Ewens random permutations with parameter
θ have Poisson-Dirichlet distribution with the same parameter, ϑ = θ. Since cycle
lengths satisfy a split-merge process, we can conclude that its invariant measure
is Poisson-Dirichlet with parameter ϑ = gs

gm
.

All this is well-known in mathematical biology and probability theory. We refer
to [5; 14; 32; 36] for further information, including mathematical results about the
delicate issue of uniqueness of the invariant measure.

6.2 Split-merge process for GEM

We now consider unordered partitions and introduce a modi�ed split-merge pro-
cess whose invariant measure is GEM(ϑ). If we project onto ordered partitions, we
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recover the usual split-merge process. Since GEM projects onto PD, this indeed
proves that PD is invariant for split-merge. This proof could perhaps be extended
to the case gs, gm 6= 1, but this remains to be clari�ed.

It is convenient to work with integer partitions, so we deal with probabilities
rather than densities, and we avoid the tiny but numerous elements at the ac-
cumulation point. Let n ∈ N be a large number and let Mn denote the set of
unordered integer partitions of n, that is, an element m = (m1, . . . ,mk) of Mn

is a k-tuple (with varying k) of integers mi ∈ {1, . . . , n} such that
∑k
i=1mi = n.

The discrete analogue of the stick-breaking construction is that the probability of
m = (m1, . . . ,mk) is

PMn
(m) =

1

n

1

n−m1
. . .

1

n−m1 − · · · −mk−1
=

1

nM1 . . .Mk−1
, (6.5)

where we introduced Mj = n−
∑j
i=1mi =

∑
i>jmi.

The split-merge process for GEM consists in choosing two distinct numbers in
{1, . . . , n} at random. If they fall in di�erent partition elements, these elements
are merged and the combined element takes the place of the leftmost one. If the
numbers fall in the same partition element mj , it is split uniformly as mj = s+ t
(s can be 0, in which case the partition does not change). The jth position is
assumed by s with probability s

mj
and by t with probability t

mj
. The other one

(call it u) takes the (j + 1)th position with probability u
Mj+u

and moves to the
right otherwise, where it takes the (j + 2)th position with probability u

Mj+1+u ,
and moves further to the right otherwise.

1 2

m′j+` = mj+`+1

m′j = mj +mj+` m′k+1 = mk

m′j+1 = mj+1

m′j+`−1 = mj+`−1

m2 mj mj+`

m′

m
m1

mj+1
mj+`+1 mk

m′1 = m1 m′2 = m2

Fig. 9: The stochastic process on unordered partitions.

Let m and m′ be partitions as in Fig. 9. m′ is obtained from m by merging
the elements mj and mj+`, which gives m′j ; m is obtained from m′ by splitting
m′j into mj and mj+` and by placing them in the jth and (j + `)th positions,
respectively. The probability of the move m 7→ m′ is

PMn
(m)

2mjmj+`

n2
. (6.6)

The probability of the move m′ 7→ m is
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PMn
(m′)

(m′j)
2

n2

2mj

(m′j)
2︸ ︷︷ ︸

splits m′j

M ′j
M ′j +mj+`

M ′j+1

M ′j+1 +mj+`
. . .

M ′j+`−2

M ′j+`−2 +mj+`︸ ︷︷ ︸
moves mj+` by `− 1 steps to the right

·
mj+`

M ′j+`−1 +mj+`︸ ︷︷ ︸
stays at position j + `

= PMn(m′)
2mj

n2

M ′j
Mj

M ′j+1

Mj+1
. . .

M ′j+`−2

Mj+`−2

mj+`

Mj+`−1
. (6.7)

The expressions (6.6) and (6.7) are equal, so the probability distribution PMn

satis�es the detailed balanced condition and is then invariant.

7 Relevance of the split-merge process for loop soups

We consider now the model of random loops of Subsection 2.4, but the present
heuristics applies to all models that involve macroscopic loops. Let us discretise
the �time� interval [0, β] with mesh 1/n. Given a realisation ω of crosses and
double bars, let C(ω) and B(ω) denote the number of crosses and double bars,
respectively. The measure on realisations is

µ(ω) =
1

Z
θ|L(ω)|(u

n

)C(ω)(1− u
n

)B(ω)(
1− 1

n

)d|Λ|βn−c(ω)−B(ω)
. (7.1)

Here, θ is an arbitrary parameter. It needs to be half-integer in order to represent
a quantum spin system, but the loop model makes sense more generally.

We now introduce a Markov process such that the measure above is invariant.
With R(ω, ω′) the transition matrix ω 7→ ω′, the detailed balance equation is

θ|L(ω)|(u
n

)C(ω)(1− u
n

)B(ω)
R(ω, ω′) = θ|L(ω′)|(u

n

)C(ω′)(1− u
n

)B(ω′)
R(ω′, ω). (7.2)

Here is a natural process that satis�es the equation above:

� A new cross appears in {x, y} × [t, t + 1
n ] at rate

√
θ un if it causes a loop to

split; at rate 1√
θ
u
n if it causes two loops to merge; at rate u

n if the number of
loops does not change.

� Same with double bars, but with 1− u instead of u.
� An existing cross or double bar is removed at rate

√
θ if its removal causes a

loop to split; at rate 1√
θ
if its removal causes two loops to merge; at rate 1 if

the number of loop remains contant.

Notice that any new cross or double bar between two loops causes them to merge.
When u = 1, any new cross within a loop causes it to split. When u = 0, any new
double bar within a loop causes it to split, provided the graph Λ is bipartite. (We
discuss below the case u ∈ (0, 1), where this is not true.)

Let γ, γ′ be two macroscopic loops of lengths `(γ), `(γ′). They are spread all
over Λ and they interact between one another, and among themselves, in an
essentially mean-�eld fashion. There exists a constant c1 such that a new cross
or double bar that causes γ to split, appears at rate 1

2

√
θ c1

`(γ)2

β|Λ| ; a new cross or
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double bar that causes γ and γ′ to merge appears at rate (c1/
√
θ) `(γ)`(γ′)

β|Λ| . There
exists another constant c2 such that the rate for an existing cross or double bar to
disappear is 1

2

√
θ c2

`(γ)2

β|Λ| if γ is split, and (c2/
√
θ) `(γ)`(γ′)

β|Λ| if γ and γ′ are merged.
Consequently, γ splits at rate

1
2

√
θ(c1 + c2)

`(γ)2

β|Λ|
≡ 1

2rs`(γ)2
(7.3)

and γ, γ′ merge at rate

1√
θ

(c1 + c2)
`(γ)`(γ′)

β|Λ|
≡ rm`(γ)`(γ′). (7.4)

Because of e�ective averaging over the whole domain, the constants c1 and c2 are
the same for all loops and for both the split and merge events. This key property is
certainly not obvious and the interested reader is referred to a detailed discussion
for lattice permutations with numerical checks [25]. It follows that the lengths
of macroscopic loops satisfy an e�ective split-merge process, and the invariant
distribution is Poisson-Dirichlet with parameter ϑ = rs/rm = θ [5; 24; 36].

The case u ∈ (0, 1) is di�erent because loops split with only half of the above
rate. Indeed, the appearance of a new transition within the loop may just rearrange
it: topologically, this is like 0 ↔ 8, see Fig. 10 for illustration. We get Poisson-
Dirichlet with parameter ϑ = θ

2 .

Fig. 10: When u ∈ (0, 1), a local change involving two legs of the same loop may
rearrange it rather than split it. This �gure shows all cases corresponding to the addition
of a transition. The loop necessarily splits when u = 0 or u = 1.

8 Consequences of the Poisson-Dirichlet conjecture

Now that we know the structure of the macroscopic loops, we should gain useful
information about the original systems. But not too many useful consequences
have so far been unearthed. We discuss here quantum spin systems and the sym-
metry of the low-temperature phases, following [38].

In this section, we denote 〈 · 〉HΛ the Gibbs state in domain Λ ⊂ Zd and
hamiltonian HΛ, that is,



6 Universal Behaviour of 3D Loop Soup Models 93

〈 · 〉HΛ =
1

Tr e−βHΛ
Tr · e−βHΛ . (8.1)

8.1 Spin 1
2
systems

We consider the hamiltonian of Eq. (2.22) with nearest-neighbour interactions
−S1

xS
1
y − (2u − 1)S2

xS
2
y − S3

xS
3
y . In dimensions 3 and larger (or in the ground

state in dimension 2), one expects ferromagnetism and long-range order. The case
u = 1 corresponds to the ordinary Heisenberg ferromagnet and the extremal states
should be given by

〈 · 〉→
a

= lim
h→0+

lim
Λ↗Zd

〈 · 〉
H

(u)
Λ −h

∑
x

→
a ·
→
Sx
, (8.2)

where
→
a is any vector in S2. In the case where u ∈ (0, 1), the model has U(1) sym-

metry only, and the extremal states are 〈 · 〉→
a
with

→
a ∈ S1, of the form (a1, 0, a3).

Another way to write the symmetry breakings is

lim
Λ↗Zd

〈 e
h
|Λ|

∑
x∈Λ

→
a ·
→
Sx 〉

H
(u)
Λ

=


∫
S2 ehm

→
a ·
→
b d
→
b if u = 0 or 1,∫

S1 ehm
→
a ·
→
b d
→
b if u ∈ (0, 1).

(8.3)

Here, m is the magnetisation of the system1. In the case u ∈ (0, 1), both
→
a and

→
b are of the form (a1, 0, a3). The meaning of these identities is that the in�nite
volume limit of 〈 · 〉HΛ is a convex combination of the states 〈 · 〉→

a
above. By

rotation invariance, this does not depend on
→
a and we have for u = 0 or 1,∫

S2
ehm

→
a ·
→
b d
→
b =

∫
S2

ehmb3 d
→
b =

sinh(hm)

hm
. (8.4)

In the case u ∈ (0, 1), we get a Bessel function, namely,∫
S1

ehm
→
a ·
→
b d
→
b =

1

2π

∫ 2π

0

ehm cosφ dφ =
∑
n≥0

1

(n!)2
( 1

2hm)2n. (8.5)

The advantage of the identities (8.3) is that the expectation of e
h
|Λ|

∑
x S

3
x has a

nice expression in terms of the loops of Section 2.4. Indeed, by a similar expansion
that uses Trotter product formula, we get

〈 e
h
|Λ|

∑
x S

3
x 〉
H

(u)
Λ

= E(u)
Λ

( ∏
γ∈L(ω)

cosh
( h

2|Λ|
`(γ)

))
. (8.6)

Here, E(u)
Λ denotes expectation with respect to the model of random loops with

weights 2|L(ω)|, and `(γ) is the total length of all vertical legs of the loop γ.
At low temperatures and for large domains, we expect that macroscopic loops

are present and that they occupy a �xed fractionm of the available space. Further,

1 Tom Spencer suggested these equations (private communication).
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by the discussion of Section 7, the joint distribution of their lengths is Poisson-
Dirichlet with parameter ϑ = 2 when u = 0 or 1, and ϑ = 1 when u ∈ (0, 1). By
Conjecture 2 (3), which applies to the hyperbolic cosine, we get

lim
|Λ|→∞

〈 e
h
|Λ|

∑
x S

3
x 〉
H

(u)
Λ

= EPD(ϑ)

(∏
j≥1

cosh
(

1
2hmXj

))
. (8.7)

The right side was calculated in Eq. (4.18); we obtained

EPD(ϑ)

(∏
j≥1

cosh
(

1
2hmXj

))
=

{∑
r≥0

1
(2r+1)! (

hm
2 )2r =

sinh( 1
2hm)

1
2hm

if ϑ = 2,∑
r≥0

1
(r!)2 ( 1

2hm)2r if ϑ = 1.
(8.8)

(The last expression is perhaps not immediately apparent from (4.18); it uses the
identity 22nn!Γ (n+ 1

2 ) = Γ (2n+1)Γ ( 1
2 ).) Then Eqs (8.8) are precisely the expres-

sions (8.4) and (8.5), with the magnetisation being half the mass of macroscopic
loops, m = 1

2m. This shows that the Poisson-Dirichlet conjectures are compatible
with our expectations of symmetry breaking.

8.2 Spin 1 systems

We now turn to the spin 1 model of Eq. (2.23); it is worth to consider the general
model with SU(2) invariant, nearest-neighbour interactions, namely

HΛ = −
∑

{x,y}⊂Λ
‖x−y‖=1

(
J1

→
Sx ·

→
Sy + J2(

→
Sx ·

→
Sy)2

)
. (8.9)

Here, J1, J2 are two real parameters. The phase diagram of this model was studied
in [19]. For d ≥ 3 and low temperatures (or d = 2 in the ground state), it
decomposes into four regions with ferromagnetic, spin nematic, antiferromagnetic,
and staggered nematic phases. The phase diagram is displayed in Fig. 11.

The loop representation of Section 2.4 applies to the model with the hamil-
tonian H̃(u)

Λ in (2.23), which corresponds to the spin nematic region, and also to
its boundaries where the model has SU(3) invariance. We only discuss the case
u ∈ (0, 1).

We now seek to confront symmetry breaking with the Poisson-Dirichlet con-
jectures in a similar fashion as in the spin 1

2 case. This is actually more interesting
here because the nature of symmetry breaking is no longer obvious. The operators
that are associated with the spin nematic phase are

A
→
a
x = (

→
a ·
→
Sx)2 − 2

3 , (8.10)

with
→
a ∈ S2 (notice that

→
a is equivalent to −→a ). The constant − 2

3 ensures that

〈A
→
a
x 〉 = 0 when the Gibbs state is invariant under spin rotations. We write Aix for

A
→
e i
x .
We �rst look for an analogue to the identities (8.3). Assuming that a spin

nematic transition takes place, there exist extremal Gibbs states 〈 · 〉→
a
where

→
a ∈
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NEMATIC

J

J1

ANTIFERROMAGNETIC

SPIN

2

SU(3)

SU(3)

FERROMAGNETIC

SU(3)

SU(3)

NEMATIC
STAGGERED

Fig. 11: Phase diagram of the general spin 1 model with hamiltonian (8.9) in dimension
d ≥ 3. On the two lines J1 = 0 and J2 = J1 the model has SU(3) invariance, not only
SU(2). The phase diagram is expected to show four phases (ferromagnetic, nematic,
antiferromagnetic, staggered nematic) that are separated by those lines.

S2, and with 〈 · 〉−→a = 〈 · 〉→
a
. (It might be more elegant to label extremal states

with the projective space PS2, where±→a are identi�ed.) We introduce what should
be the nematic counterpart to the magnetisation density, namely

n = lim
Λ↗Zd

〈 1

|Λ|
∑
x∈Λ

A3
x

〉
→
e 3

. (8.11)

We expect that n 6= 0 if the temperature is low and d ≥ 3, or in the ground state
and d ≥ 2. The expectation of 1

|Λ|
∑
xA

→
a
x for general

→
a ∈ S2 can be expressed in

terms of n. Indeed,

〈 1

|Λ|
∑
x∈Λ

A
→
a
x

〉
→
e 3

=
1

|Λ|

[ 3∑
i=1

a2
i 〈(Six)2 − 2

3 〉→e 3
+
∑
i6=j

aiaj〈SixSjx〉→e 3

]
. (8.12)

We can assume that 〈 · 〉→
e 3

is invariant under spin rotations around
→
e 3, and also

that 〈S3
x〉→e 3

= 0, so that 〈SixSjx〉→e 3
= 0 for all i 6= j. Further, since (S1

x)2 +(S2
x)2 +

(S3
x)2 = 2, we have

〈(S1
x)2 − 2

3 〉→e 3
= 〈(S2

x)2 − 2
3 〉→e 3

= 1
2 〈(S

3
x)2 − 2

3 〉→e 3
. (8.13)

This gives
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lim
Λ↗Zd

〈 1

|Λ|
∑
x∈Λ

A
→
a
x

〉
→
e 3

= n(a2
3 − 1

2a
2
1 − 1

2a
2
2). (8.14)

This allows to calculate

lim
Λ↗Zd

〈
e
h
|Λ|

∑
x∈Λ A

3
x

〉
H̃

(u)
Λ

= lim
Λ↗Zd

∫
S2

〈
e
h
|Λ|

∑
x∈Λ A

3
x

〉
→
a

d
→
a

= lim
Λ↗Zd

∫
S2

〈
e
h
|Λ|

∑
x∈Λ A

→
a
x

〉
→
e 3

d
→
a

=

∫
S2

ehn(a23− 1
2a

2
1− 1

2a
2
2) d
→
a

= e−
1
2hn

∑
k≥0

( 3
2hn)k

k!(2k + 1)
.

(8.15)

Next, we compute the same quantity using the loop representation and the
conjectures. By a Trotter product expansion, we obtain〈

e
h
|Λ|

∑
x∈Λ A

3
x

〉
H̃

(u)
Λ

= E(u)
Λ

( ∏
γ∈L(ω)

(
1
3 e−

2
3
h
|Λ| `(γ) + 2

3 e
1
3
h
|Λ| `(γ) )), (8.16)

where the expectation is taken over the random loop model of Section 2.4 with
weights 3|L(ω)|. Conjectures 1 and 2, together with the argument of Section 7, state
that macroscopic loops have �xed total mass m, and that the joint distribution
of their lengths is Poisson-Dirichlet with parameter ϑ = 3

2 . By Conjecture 2 (3),
we have

lim
Λ↗Zd

〈
e
h
|Λ|

∑
x∈Λ A

3
x

〉
H̃

(u)
Λ

= EPD( 3
2 )

(∏
i≥1

(
1
3 e−

2
3hmYi + 2

3 e
1
3hmYi

))
= e−

2
3hm EPD( 3

2 )

(∏
i≥1

(
1
3 + 2

3 ehmYi
))
.

(8.17)

We can use Eq. (4.16) for the function f(s) = 1
3 + 2

3 es whose Taylor coe�cients
are a0 = 1, ak = 2

3
1
k! for k ≥ 1. We obtain

lim
Λ↗Zd

〈
e
h
|Λ|

∑
x∈Λ A

3
x

〉
H̃

(u)
Λ

= e−
2
3hm

∑
n≥0

1

n!

∑
k1,...,kn≥1

ak1 . . . akn
( 3

2 )nΓ ( 3
2 )Γ (k1) . . . Γ (kn)

Γ ( 3
2 + k1 + · · ·+ kn)

(hm)
∑
ki

= e−
2
3hm

∑
r≥0

(hm)rΓ ( 3
2 )

Γ ( 3
2 + r)

∑
n≥0

1

n!

∑
k1,...,kn≥1
k1+···+kn=r

1

k1 . . . kn

= e−
2
3hm

∑
r≥0

Γ ( 3
2 )

Γ ( 3
2 + r)

(hm)r.

(8.18)

We used Eq. (4.19) in the last equality. Although it is not immediately apparent,
this the same function of h as (8.15), provided that
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n = − 2
3m. (8.19)

Recall that m represents the fraction of available volume that is occupied by
macroscopic loops and it is therefore nonnegative. It may come as a surprise that n
is negative. This provides information on the nature of the nematic states. Indeed,
it is natural to conjecture that extremal nematic states are de�ned in a similar
manner as in the classical case, namely,

〈 · 〉→
a

= lim
h→0+

lim
Λ↗Zd

〈 · 〉
H̃

(u)
Λ −h

∑
x∈Λ A

→
a
x

. (8.20)

These are �axial nematic� states [19]. The state 〈 · 〉→
e 3

has an illuminating expres-

sion in terms of random loops. With hamiltonian H̃(u)
Λ −h

∑
x∈ΛA

3
x, the partition

function becomes

Z
(u)
→
e 3

(Λ, h) = e
1
3βh|Λ|

∫
ρ(dω)

∏
γ∈L(ω)

∑
σγ∈{−1,0,1}

eh`(γ)(σ2
γ−1) . (8.21)

We should keep in mind that the domain Λ is huge and the parameter h is
small and positive, with |Λ|−1 � h � 1. It follows that short loops carry la-
bels {−1, 0, 1} indi�erently, while macroscopic loops carry labels {−1, 1}. (These
labels are not exactly constant along each loop, but they change signs when the
vertical direction changes.) The weight is therefore 3|Lshort(ω)|2|Llong(ω)|; let P(u)

→
e 3

denote the corresponding loop measure. This allows to relate n and m:

〈A3
x〉→e 3

=
e

1
3βh|Λ|

Z→
e 3

(Λ, h)

[∫
γ(x,0) is short

ρ(dω) 3|Lshort(ω)|2|Llong(ω)| 1
3

∑
σ∈{−1,0,1}

(σ2 − 2
3 )

+

∫
γ(x,0) is long

ρ(dω) 3|Lshort(ω)|2|Llong(ω)| 1
2

∑
σ∈{−1,1}

(σ2 − 2
3 )

]
= 1

3P
(u)
→
e 3

(γ(x,0) is long).

(8.22)

We split the integral over all loop con�gurations according to whether (x, 0) ∈
Λ× [0, β] belongs to a short or long loop. The sums

∑
σ are over the spin values

of the loop γ(x,0). The latter probability is equal to m, which gives n = 1
3m. This

contradicts (8.19), however. Where is the error?
It turns out that the extremal nematic states are not axial nematic, but �planar

nematic� [19]. That is, let

〈 · 〉′→
a

= lim
h→0+

lim
Λ↗Zd

〈 · 〉
H̃

(u)
Λ +h

∑
x∈Λ A

→
a
x

. (8.23)

Notice the �+� sign in front of h, which should be contrasted with Eq. (8.20).
This state favours the eigenvalue 0 rather than ±1. The corresponding partition
function is

Z ′→
e 3

(Λ, h) = Z
(u)
→
e 3

(Λ,−h) = e
2
3βh|Λ|

∫
ρ(dω)

∏
γ∈L(ω)

∑
σγ∈{−1,0,1}

e−h`(γ)σ2
γ . (8.24)
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When |Λ|−1 � h � 1, the short loops carry labels {−1, 0, 1} as before, but long
loops are stuck with label 0. Then, with P′→

e 3

denoting the corresponding loop
measure,

〈A3
x〉′→e 3

=
e

2
3βh|Λ|

Z ′→
e 3

(Λ, h)

[∫
γ(x,0) is short

ρ(dω) 3|Lshort(ω)| 1
3

∑
σ∈{−1,0,1}

(σ2 − 2
3 )

+

∫
γ(x,0) is long

ρ(dω) 3|Lshort(ω)|(− 2
3 )

]
= − 2

3P
′
→
e 3

(γ(x,0) is long).

(8.25)

This gives n = − 2
3m, in conformity with (8.19). These calculations use the con-

jectures about the joint distribution of lengths of long loops, and they give strong
evidence that nematic states are planar nematic. This result was far from imme-
diate.

Similar considerations are possible in the cases u = 0 and u = 1, which
correspond to SU(3)-invariant interactions. We refer to [38] for details.

Acknowledgments: I am grateful to Bogdan Cichocki, Filip Dutka, Paweª
Jakubczyk, Maciej Lisicki, Andrzej Majhofer, Marek Napiórkowski, Jarosªaw Pia-
secki, and Piotr Szymczak, who organised the 6th Warsaw School of Statistical
Physics, and who gave me the opportunity to give a series of lectures on one
of my favourite topics. These notes bene�tted from useful comments by Paweª
Jakubczyk and Marcin Napiórkowski. I would also like to thank the many col-
leagues and collaborators who helped me to understand this topic better, including
Jürg Fröhlich, Gian Michele Graf, Alan Hammond, and James Martin.

References

[1] M. Aizenman, B. Nachtergaele, Geometric aspects of quantum spin states, Comm.
Math. Phys., 164, 17�63 (1994)

[2] R. Arratia, A. D. Barbour, S. Tavaré, Logarithmic Combinatorial Structures: A
Probabilistic Approach. EMS Monographs in Mathematics (2003)

[3] A. Barp, E.G. Barp, F.-X. Briol, D. Ueltschi, A numerical study of the 3D random

interchange and random loop models, J. Phys. A 48, 345002 (2015)
[4] N. Berestycki, G. Kozma, Cycle structure of the interchange process and represen-

tation theory, Bull. Soc. Math. France 143, 265�281 (2015)
[5] J. Bertoin, Random fragmentation and coagulation processes, Cambridge Studies

Adv. Math. 102, Cambridge University Press (2006)
[6] V. Betz, Random permutations of a regular lattice, J. Stat. Phys. 155, 1222�1248

(2014)
[7] V. Betz, L. Taggi, Ensembles of self-avoiding polygons, arXiv:1612.07234 (2016)
[8] V. Betz, D. Ueltschi, Spatial random permutations and in�nite cycles, Commun.

Math. Phys. 285, 469�501 (2009)
[9] V. Betz, D. Ueltschi, Spatial random permutations and Poisson-Dirichlet law of

cycle lengths, Electr. J. Probab. 16, 1173�1192 (2011)



6 Universal Behaviour of 3D Loop Soup Models 99

[10] J.E. Björnberg, Large cycles in random permutations related to the Heisenberg

model, Electr. Comm. Probab. 20, 1�11 (2015)
[11] J.E. Björnberg, The free energy in a class of quantum spin systems and interchange

processes, J. Math. Phys. 57, 073303 (2016)
[12] D. Brydges, J. Fröhlich, T. Spencer, The random walk representation of classical

spin systems and correlation inequalities, Comm. Math. Phys. 83, 123�150 (1982)
[13] B. Derrida, H. Spohn, Polymers on disordered trees, spin glasses, and traveling

waves, J. Stat. Phys. 51, 817�840 (1988)
[14] P. Diaconis, E. Mayer-Wolf, O. Zeitouni, M.P.W. Zerner, The Poisson-Dirichlet law

is the unique invariant distribution for uniform split-merge transformations, Ann.
Probab. 32, 915�938 (2004)

[15] W.J. Ewens, The sampling theory of selectively neutral alleles, Theor. Popul. Biol.
3, 87�112 (1972)

[16] R. Fernández, J. Fröhlich, A.D. Sokal, Random Walks, Critical Phenomena, and

Triviality in Quantum Field Theory, Texts and Monographs in Physics, Springer
(1992)

[17] T. Ferguson, A Bayesian analysis of some nonparametric problems, Ann. Statist.
1, 209 (1973)

[18] R.P. Feynman, Atomic theory of the λ transition in Helium, Phys. Rev. 91, 1291�
1301 (1953)

[19] Yu.A. Fridman, O.A. Kosmachev, Ph.N. Klevets, Spin nematic and orthogonal ne-

matic states in S = 1 non-Heisenberg magnet, J. Magnetism and Magnetic Mate-
rials 325, 125�129 (2013)

[20] J. Fröhlich, B. Simon, T. Spencer, Infrared bounds, phase transitions and continuous
symmetry breaking, Comm. Math. Phys. 50, 79�95 (1976)

[21] D. Gandolfo, J. Ruiz, D. Ueltschi, On a model of random cycles, J. Statist. Phys.
129, 663�676 (2007)

[22] A. Gladkich, R. Peled, On the cycle structure of Mallows permutations, preprint,
arXiv:1601.06991

[23] C. Godrèche, S.N. Majumdar, G. Schehr, Record statistics of a strongly correlated

time series: random walks and Lévy �ights, preprint, arXiv:1702:00586
[24] C. Goldschmidt, D. Ueltschi, P. Windridge, Quantum Heisenberg models and their

probabilistic representations, in Entropy and the Quantum II, Contemp. Math. 552,
177�224 (2011); arXiv:1104.0983

[25] S. Grosskinsky, A.A. Lovisolo, D. Ueltschi, Lattice permutations and Poisson-

Dirichlet distribution of cycle lengths, J. Statist. Phys. 146, 1105�1121 (2012)
[26] H.K. Hwang, Asymptotic expansions for the Stirling numbers of the �rst kind, J.

Combin. Theory A 71, 343�351 (1995)
[27] R. Kikuchi, λ transition of liquid Helium, Phys. Rev. 96, 563�568 (1954)
[28] J.F.C. Kingman, Random discrete distributions, J. Royal Statist. Soc. B 37, 1�22

(1975)
[29] R. Kotecký, P. Miªo±, D. Ueltschi, The random interchange process on the hypercube,

Electron. Commun. Probab. 21, no. 4 (2016)
[30] B. Nachtergaele, A stochastic geometric approach to quantum spin systems, in Prob-

ability and Phase Transitions, G. Grimmett (ed.), Nato Science series C 420, pp
237�246 (1994)

[31] A. Nahum, J.T. Chalker, P. Serna, M. Ortuño, A.M. Somoza, Length distributions

in loop soups, Phys. Rev. Lett. 111, 100601 (2013)
[32] J. Pitman, Poisson-Dirichlet and GEM invariant distributions for split-and-merge

transformations of an interval partition, Combin. Probab. Computing 11, 501�514
(2002)



100 Daniel Ueltschi

[33] O. Schramm, Compositions of random transpositions, Israel J. Math. 147, 221�243
(2005)

[34] A. Süt®, Percolation transition in the Bose gas, J. Phys. A 26, 4689 (1993)
[35] B. Tóth, Improved lower bound on the thermodynamic pressure of the spin 1/2

Heisenberg ferromagnet, Lett. Math. Phys. 28, 75�84 (1993)
[36] N.V. Tsilevich, Stationary random partitions of a natural series, Teor. Veroyatnost.

i Primenen. 44, 55�73 (1999)
[37] D. Ueltschi, Random loop representations for quantum spin systems, J. Math. Phys.

54, 083301, 1�40 (2013)
[38] D. Ueltschi, Ferromagnetism, antiferromagnetism, and the curious nematic phase

of S = 1 quantum spin systems, Phys. Rev. E 91, 042132, 1�11 (2015)
[39] A.M. Vershik, The asymptotic distribution of factorizations of natural numbers into

prime divisors, Soviet. Mat. Dokl. 34, 57 (1986)
[40] A.M. Vershik, A. Schmidt, Limit measures arising in the theory of groups I, Theor.

Probab. Appl. 22, 79 (1977)


