
34 

Absolute and relative measures of the demand response to changes in prices and consumer 

income 

Classification of goods and services: ordinary, Giffen, Veblen good; substitute, 

complementary, independent goods; inferior, normal good 

Paths of price and incomexpansion of demand 

Marshallian dynamic demand function 

1.4. Exercises  

E1. We have: 

the supply set � = {� ∈ ��
� ⃓ "# ≤ %#, "� ≤ %�}, %#, %� > 0, 

the demand set  &(', )) = {� ∈ ��
� ⃓ +#"# + +�"� ≤ )}, +#, +� > 0, 

the supply-demand set . = � ∩ &(', )) such that: 

a) . = � ∩ &(', )) = �, 

b) . = � ∩ &(', )) = &(', )), 

c) . ≠ &(', )) or . ≠ �, 

the consumption utility functions: 

a) linear 2(�) = 3#"# + 3�"� + 34, 3#, 3�, 34 > 0, 

b) of Koopmans-Leontief 2(�) = 567{3#"#, 3�"�}, 3#, 3�, > 0. 

1. Present a geometric illustration of three demand-supply sets P in the goods space 8 = ��
� . 

2. Present illustrations of indifference curves {� ∈ ��
� ⃓ 3#"# + 3"� + 34 = 29 > 0} for the 

linear utility function and Koopmans-Leontief utility function. 

3. By a geometric method  solve the consumption utility maximization problems with the 

linear utility function and the Koopmans-Leontief utility function on the sets P. 

4. Can be that the consumption utility maximization problem with the linear utility function 

or the Koopmans-Leontief utility function has infinitely many optimal solutions on the sets 

of acceptable  solutions P? 

E2. We have: 

the demand – supply set: � = � ∩ �(�, �) such that: 

a) � = � ∩ �(�, �) = �, 

b) � = � ∩ �(�, �) = �(�, �), 

c) � ≠ �(�, �) or � ≠ �. 

and the consumption utlitity maximization  problem:  

"(#) → %&', 

# ∈ � 
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· if ∀-  ./01(2)3 = '̅/01(2)3 − &6/ < 0, then '̅/01(2)3 < &6/   ⇔   9/(:;>) < 9/(2), which 

means that if the global demand for the i-th good is lower than the global supply of this 

good, then its price at time 2 + 1 should be lower than at time t, 

· it ∃-  ./01(2)3 = '̅/01(2)3 − &6/ = 0, then '̅/01(2)3 = &6/   ⇔   9/(:;>) = 9/(2), which 

means that if on the market of the i-th good at time 2 the global supply and the global 

demand are the same, then the price of this good should not be changed at time 2 + 1. In 

this case, when the price of the i-th good is the equilibrium price, we say that the market 

for all goods has a partial equilibrium with respect to the i-th good. 

On the other hand, if with the proposed price system, there is an equilibrium of global 

supply and global demand for all goods, we say that a global equilibrium was achieved in the 

consumer goods market – the equilibrium defined by the Walrasian equilibrium price vector 

1B > D. 

The main questions regarding the market described by the dynamic Arrow-Hurwicz 

model are: 

− Is there a state of the Walrasian equilibrium on the consumer goods market? 

− Is there exactly one or at least one state of the Walrasian equilibrium? 

− Whether and in what period is it possible to achieve the state of the Walrasian 

equilibrium? 

To answer these questions, one needs to determine in what way a broker sets the price 

of consumer goods. 

Df. 2.31 A dynamic discrete-time Arrow-Hurwicz model is a system of difference 

equations of the form:  

(77) ( 1) ( ) ( ( ))" + = +i i i ii p t p t σ z p t , 

with the initial condition: 

(78) 0(0) 0" = >i ii p p , 

(79) 0,1,2,...=t  

where: 0>is  denotes a measure of the broker ‘s sensitivity to the imbalance in the i-th 

good’s market, which for the sake of simplicity is assumed to be the same for the market of 

each good: .0>=" ss ii  

The condition (77) can be written in the equivalent form:  

(80) ( 1) ( ) ( ( ))" + - =i i i ii p t p t σ z p t . 

On the basis of (77) and (80) we can conclude that: 
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( ( )) 0 ( 1) ( ) 0 ( 1) ( )> Þ + - > Þ + >i i i i iz p t p t p t p t p t , 

( ( )) 0 ( 1) ( ) 0 ( 1) ( )< Þ + - < Þ + <i i i i iz p t p t p t p t p t , 

( ( )) 0 ( 1) ( ) 0 ( 1) ( )= Þ + - = Þ + =i i i i iz p t p t p t p t p t . 

Equivalent conditions (77) and (80) lead to a simple recursive rule for determining the 

prices of all goods in subsequent moments of time, which does not, however, ensure that the 

resulting price systems will make economic sense. We are not interested in situations where 

the price of any commodity is negative. Therefore, our attention should be focused only on 

such solutions to systems of difference equations (77) or (80), in which the vectors of 

consumer goods prices determined on basis of these solutions are positive: 0)1( >+" tpi i .  

Df. 2.32  A feasible price trajectory in the dynamic discrete-time Arrow-Hurwicz model is 

an infinite sequence of solutions to the difference equations system (80) with an initial 

condition 0pp >= 0)0(  such that ∀� = 0,1,2, . . . �(� + 1) > �. 

Assuming there exists a feasible price trajectory in the dynamic discrete-time Arrow- 

-Hurwicz model, one is interested in the conditions of existence, uniqueness and stability of 

the Walrasian equilibrium state. 

Df. 2.33 The Walrasian equilibrium 0p >  is called asymptotically globally stable when 

the feasible trajectory of goods prices meets the condition: 

(81) lim�→�� �(� + 1) → �. 

Global stability means that any feasible trajectory of goods prices starting from any 

initial price system 0pp >= 0)0(  after reaching the state of Walrasian equilibrium will 

remain in this state. It is about an asymptotic stability, because the state of Walrasian 

equilibrium is a target state which, if exists, can be achieved in an infinite time horizon. 

Df. 2.34 A dynamic continuous-time Arrow-Hurwicz model is a system of differential 

equations of the form: 

(82) 
( )

( ( ))i
i i

dp t
i σ z p t

dt
" = , 

with the initial condition:  

(83) 0(0) 0i ii p p" = > , 

(84) � ∈ [0; +∞), 

where:  

0>is  denotes a measure of the broker’s sensitivity to the imbalance in the i-th good market, 

which for the sake of simplicity is assumed to be the same for the market of each good. 
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On the basis of (82) we can conclude that: 

( )
( ( )) 0 0 ( 1) ( )i

i i i

dp t
z p t p t p t

dt
> Þ > Þ + > , 

( )
( ( )) 0 0 ( 1) ( )i

i i i

dp t
z p t p t p t

dt
< Þ < Þ + < , 

and 

( )
( ( )) 0 0 ( 1) ( )i

i i i

dp t
z p t p t p t

dt
= Þ = Þ + = . 

Still a simple recursive rule for determining the prices of all commodities in subsequent 

moments of time, described by the condition (82), does not guarantee that the resulting price 

systems will make economic sense. Therefore, we should focus our attention only on such 

solutions to systems of differential equations (82), in which the vectors of consumer goods 

prices determined on basis of these solutions are positive: .0,0)( ®D>D+" tttpi i  

Df. 2.35  A feasible price trajectory in the dynamic continuous-time Arrow-Hurwicz model 

is an infinite sequence of solutions to the differential equations system (82) with an initial 

condition 0pp >= 0)0(  such that  ∀� ∈ [0; +∞)    �(� + Δ�) > !. 

Assuming that there exists a feasible price trajectory in the dynamic continuous-time 

Arrow-Hurwicz model, one is interested in conditions of existence, uniqueness and stability 

of the Walrasian equilibrium state. 

Df. 2.36 The state of Walrasian equilibrium � > 0 is called asymptotically globally stable 

when the feasible trajectory of prices meets the condition: 

(85) 
Δ 0

lim ( Δ )
t

t

t t
®+¥
®

+ ®p p . 

Global stability means that any feasible trajectory of goods prices starting from any 

initial price system 0pp >= 0)0(  after reaching the state of Walrasian equilibrium will 

remain in this state. It is about an asymptotic stability, because the state of Walrasian 

equilibrium is a target state which, if exists, can be achieved in an infinite time horizon. 

Example 2.3 

Two traders come to the market with bundles of goods: �� = (10,20),  � = (20,10). The 

utility functions of traders are: !�("��, "� ) = "���/#"� �/#
, ! (" �, "  ) = " ��/#"  �/$

. We know 

from Example 2.2 that in the static Arrow-Hurwicz model for the given initial allocation and 

given utility functions, the excess demand function takes the form: 

%(&) = '15 * *� − 15, 15 *�* − 15-, 
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and the price vector of the Walrasian equilibrium has the structure: 

&3 = 4(1, 1),    4 > 0. 

Let us first consider the dynamic discrete-time Arrow-Hurwicz model. The broker 

announces the initial prices &(0) = (2, 4). 

1. Find the trajectories of the price vector satisfying the system of equations of the dynamic 

discrete-time Arrow-Hurwicz with the proportionality coefficient σ equal to 0.25, 0.35 and 

1.25. Calculate price ratios  
78(9)
7:(9)  and compare them with the equilibrium price ratio 

7 3 8
7 3 :. 

2. Determine which of trajectories determined in point 1 are feasible. 

3. Determine if and when the price structure stabilizes around the equilibrium structure and 

whether it reaches this structure in the time horizon < = 15. 

4. Present graphs of the price trajectories in the state space. 

5. Present graphs of the price trajectories as functions of time. 

Ad 1 

The price trajectories of the first and second goods, respectively, are determined from the 

formulas: 

*�(? + 1) − *�(?) = A '15 * (?)
*�(?) − 15-, 

* (? + 1) − * (?) = A '15 *�(?)
* (?) − 15-. 

Table 2.1. Price trajectories when C = 0.25 

D EF EG EG(D)
EF(D) H E 3 GE 3 F −  EG(D)

EF(D) H 
0 2 4 2 1 

1 2.75 3.625 1.318182 0.318181818 

2 2.988636 3.443966 1.152353 0.152353481 

3 3.102901 3.344807 1.077961 0.077961226 

4 3.161372 3.290565 1.040866 0.040866096 

5 3.192022 3.261119 1.021647 0.02164683 

6 3.208257 3.245228 1.011524 0.011523673 

7 3.2169 3.236684 1.00615 0.006149976 

8 3.221512 3.232099 1.003286 0.003286371 

9 3.223977 3.229643 1.001757 0.001757333 

10 3.225295 3.228327 1.00094 0.000940043 

11 3.226 3.227623 1.000503 0.000502949 
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12 3.226377 3.227246 1.000269 0.000269119 

13 3.226579 3.227044 1.000144 0.000144009 

14 3.226687 3.226936 1.000077 7.70629E-05 

15 3.226745 3.226878 1.000041 4.12391E-05 

16 3.226776 3.226847 1.000022 2.20687E-05 

17 3.226792 3.226831 1.000012 1.18099E-05 

18 3.226801 3.226822 1.000006 6.31997E-06 

19 3.226806 3.226817 1.000003 3.3821E-06 

20 3.226809 3.226814 1.000002 1.80991E-06 

 

Table 2.2. Price trajectories when C = 0.35 

D EF EG  
EG(D)
EF(D) H E 3 GE 3 F −  EG(D)

EF(D) H 
0 2 4 2 1 

1 7.25 1.375 0.189655 0.810344828 

2 2.99569 23.80682 7.947024 6.947024199 

3 39.46757 19.21744 0.486917 0.513082654 

4 36.77388 24.74956 0.67302 0.326979955 

5 35.05724 27.30022 0.778733 0.221267248 

6 33.89558 28.79194 0.84943 0.150569556 

7 33.10509 29.72255 0.897824 0.102175844 

8 32.56867 30.32002 0.930957 0.069043271 

9 32.20619 30.70938 0.953524 0.04647586 

10 31.9622 30.96527 0.968809 0.031190638 

11 31.79845 31.1343 0.979114 0.020886168 

12 31.68879 31.24629 0.986036 0.013964048 

13 31.61548 31.32064 0.990674 0.009325909 

14 31.56652 31.37006 0.993776 0.006223687 

15 31.53385 31.40294 0.995849 0.004151311 

16 31.51205 31.42482 0.997232 0.002768058 

17 31.49752 31.4394 0.998155 0.001845296 

18 31.48783 31.4491 0.99877 0.001229958 

19 31.48137 31.45557 0.99918 0.000819729 

20 31.47707 31.45988 0.999454 0.000546287 

21 31.4742 31.46274 0.999636 0.000364042 
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1. Formulate the monopolist’s profix maximization problem and present its geometric 

illustration.  

2.  Find the optimal production quantity. 

3.  Find the optimal product price. 

4.  Find the maximum profit for the monopolist. 

5.  Determine the relationship between the optimal price of a product and the price elasticity 

of product demand. 

6.  Analyze the sensitivity of the optimal production quantity, maximum profit and optimal 

price to changes in the parameters of the demand function and the total cost function. 

Note: Perform tasks 1 – 6 separately for the two different total cost functions. 

E2. There is a monopoly company that produces one product and allocates it to two markets. 

There are given: 

the exogenous functions of demand for a homogeneous product on both markets: 

IJK(*J(IJL)) = −MJ*J(IJL) + NJ , O = 1,2. 
the inverse functions of demand on both markets: 

*J(IJL) = PQRSQTUQ ,  and  *J(IJL) = VJ − WJXIJKY, VJ = PQ
UQ , WJ = �

UQ, , O = 1,2 

a total quantity of the product produced by the monopolist for both markets: 

I = Z(I�, I ) = I� + I  

the total production cost: 

[\(I) = [](I) + [L(I) = ^I + _ = ^(I� + I ) + _,  ^, _ > 0 

Everywhere else we assume that: ∀O = 1,2 IJK = IJK(*J) = IJL(*J) = IJ, which means 

that the level of production in each market adjusts to the demand that consumers report on 

each of them. However, it is not possible to resell the product on a different market than the 

one for which it is intended. 

Knowing that the monopolist’s goal is to maximize profit: 

1. Formulate the profit maximization problems: 

    a. on the first market, 

    b. on the second market, 

    c. on both markets. 

2. Determine the optimal level of production: 

     a. on the first market, 

     b. on the second market, 

     c. on both markets. 
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3. Determine the optimal profit of the monopolist: 

     a. on the market 1, 

     b. on market 2, 

     c. on both markets. 

4. Determine the optimal product price level 

     a. on market 1, 

     b. on the market 2. 

5. Perform a sensitivity analysis: 

     a. separately for each market: optimal production level and optimal product price 

which ensure the maximum profit for the monopoly, 

     b. for the optimal total supply of the product to both markets,  with respect to 

changes in values of the parameters of demandfunction and the production cost 

function. 

6. Determine the relationship between the price elasticity of demand and the optimal 

price of the product: 

a. on the market 1, 

b. on the market 2. 

7. Determine when: 

a. the optimal price on market 1 will be higher than the optimal price on market 2, 

b. the optimal price in market 2 will be higher than the optimal price in market 1, 

c. two  optimal prices will be equal to each other. 

E3. There is some company which has the monopoly for its product. The demand for this 

product is described by the demand function: IK(*) = −2* + 20. The total production cost  

for the company is described by the total cost function: [\(I) = 2I + 2.  

a. What is the optimal product supply for this monopoly? 

b. What will be the level of price set by the monopolist? 

c. What will be the level of profit achieved by the monopolist?  

 

 

 

 

 

  



87 

 

Chapter 4. Quantity and price competition in 

duopoly 

In Chapter 3 we have dealt with rational decisions of the monopoly in a single-product market 

with an exogenous function of demand for a product. Let us now consider a different market 

structure which, due to the analysis framework we adopt, is a duopoly. 

Df. 4.1 If on the market of a certain product (good or service) we have two producers, each 

of them having an impact on its price and output level and  seeking to maximize its own profit 

(there is no cartel collusion, they do not maximize the joint profit), this market structure is 

called a duopoly. 

Df. 4.2 If on the market of a certain product (good or service) we have b producers (b > 2), 

each of them having an impact on its price and output level and seeking to maximize its own 

profit (there is no cartel collusion aimed at maximizing the joint profit), then such a market 

structure is called an oligopoly. 

Among the duopoly and oligopoly models one should distinguish quantity competition 

models (on quantity of a product) and price competition models (on price of a product). 

In quantity competition models, which include Cournot and Stackelberg duopoly and 

oligopoly models, one assumes that producers produce homogeneous (undifferentiated) 

products (good or service). In that case they have to set the same price for the product. Thus, 

they cannot compete on the price of the product they manufacture, but can compete with each 

other on output levels. 

In price competition models, which include the duopoly and Bertrand oligopoly models, 

one assumes that producers produce substitute (differentiated) products. In that case, they may 

set different prices for the products they manufacture. Thus, they can compete on the prices 

of the products they manufacture. 

Due to the convention adopted in the book, we will not analyze the oligopoly models. 

We simply stress that they are simple generalizations of duopoly models (Cournot, 

Stackelberg and Bertrand) for cases where the number of producers on the market is 2>n . 

4.1. Cournot duopoly model 

4.1.1. Static approach  

(C1) There are two producers ( 2,1=i ) on the market of homogeneous (undifferentiated)  

product. Their production total cost functions are as follows: 
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(1) 1,2 ( ) ( ) ( ) , , 0" = = + = + >c z S

i i i i i i i i i i ii k y k y k y c y d c d  

being the sum of variable cost functions:  

(2) 1,2 ( ) , 0z

i i i i ii k y c y c" = = > , 

and the fixed cost: 

(3) 1,2 ( ) 0S

i i ii k y d" = = > . 

Since the total cost functions are linear functions of the production quantity, then:  

(4) 
d ( ) d ( )

1,2 0
d d

c z

i i i i
i

i i

k y k y
i c

y y
" = = = > , 

the total and variable costs of the i-th producer are increasing in the output level.  

(C2) The function of demand  reported for a product by consumers, depending on its price 

set by producers, is as follows: 

(5) ( ) , , 0,dy p ap b a b= - + >  

where: 

a – a measure of consumers’ reaction to a change in the price of a product, 

b – a measure of market capacity. 

Since the demand function has to be non-negative, then: 

(6) 0, .
b

p
a

é ùÎ ê úë û
 

(C3) The total quantity of production by both producers matches the demand that 

consumers report at the given price of the product: 

(7)  1 2 ( ) , , 0.dy y y p ap b a b+ = = - + >  

(C4) The first producer wants to determine such an output level that, taking the output level 

set by the second producer as given, guarantees the maximum profit for him/her: 

(8) 
1 1

2

1

Π ( ) max
const. 0

0.

y
y

y

®
= ³

³

  

(C5) The second producer wants to determine such an output level that, taking the output 

level of the first producer as given, guarantees the maximum profit for him/her: 

(9) 
2 2

1

2

Π ( ) max
const. 0

0.

y
y

y

®
= ³

³
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The profit function of the i-th producer can be expressed as the difference between 

his/her function of the revenue from the sale of the product and the function of the total cost 

of production: 

(10) 1,2 Π ( ) ( ) ( ( ) )i i i i i i i ii y p y y c y d p y c y d" = = - - = - - , 

Substituting the inverse demand function ( )1 2( )
b y

p y α β y y
a

-
= = - +  where: 

1
, ,

b
α β

a a
= =  into the system of equations (10) we will obtain the profit functions of both 

producers as functions of their output levels: 

– for the first producer: 

(11) 2

1 1 2 1 2 1 1 1 1 1 1 1 1 2 1Π ( , ) [ ( )] [ ]y y α β y y y c y d α c y βy βy y d= - + - - = - - - - , 

– for the second producer: 

(12) 2

2 1 2 1 2 2 2 2 2 2 2 2 1 2 2Π ( , ) [ ( )] [ ]y y α β y y y c y d α c y βy βy y d= - + - - = - - - - . 

When the output level set by the second producer is taken as given, thus treated 

as a parameter, the necessary and sufficient conditions for the profit maximization problem 

of the first producer are following
15

: 

(13) 0
0const.,

),(

2111

211 =
³==¶

P¶
yyyy

yy
 – necessary condition, 

(14) 0
0.const,

),(

211
2
1

211
2

<
³==¶

P¶
yyyy

yy
 – sufficient condition. 

When the output level set by the first producer is taken as given, thus treated 

as a parameter, the necessary and sufficient conditions for the profit maximization problem 

of the second producer are following: 

(15) 0
0.const,

),(

1222

212 =
³==¶

P¶
yyyy

yy
 – necessary condition, 

(16) 0
0.const,

),(

122
2
2

212
2

<
³==¶

P¶
yyyy

yy
 – sufficient condition, 

Determining the necessary and sufficient conditions for the profit function described 

by equations (11)–(12) we get: 

– for the first enterprise: 

                                                

15
 The profit function of the first (second) producer is a one variable function when the supply of a product by 

the second (first) producer is set. In conditions (13)–(16), we do use notions appropriate for first and second 

order partial derivatives, but the necessary and sufficient conditions of the optimum existence refer de facto to 

one variable functions. 


